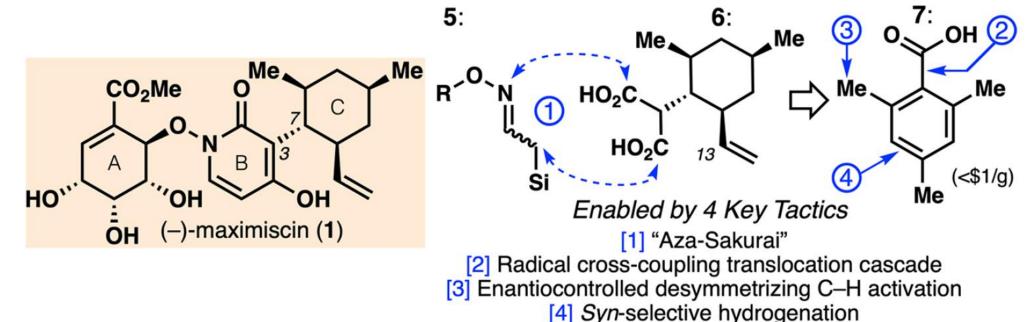
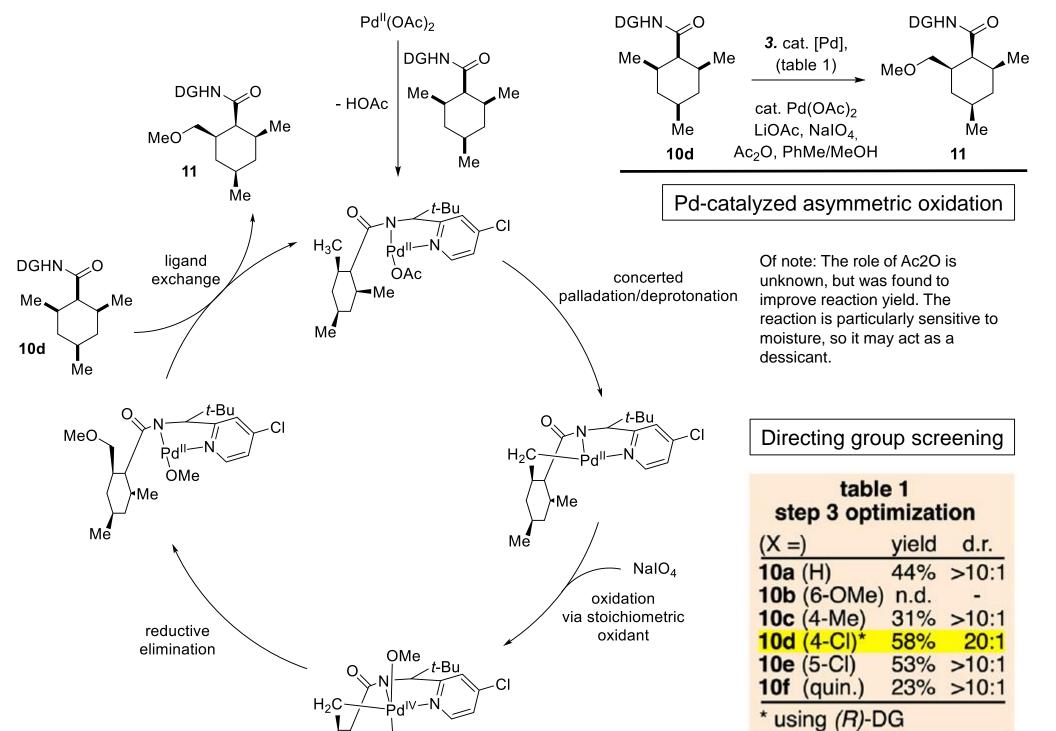

Total Synthesis of (-)-Maximiscin

Kyle S. McClymont, Feng-Yuan Wang, Amin Minakar, Phil S. Baran* *J. Am. Chem. Soc.* **2020**, *14*2, 8608 - 8613.


- (-)-Maximiscin (1) is a natural product derived from the rare union of three separate metabolic pathways.
- 1 has been shown to induce DNA damage (and DNA damage response pathways) in select triple-negative breast cancer cell lines.
- A central 1,4-dihydroxy-2-pyridone unit, a shikimate derivative, and a trisubstituted cyclohexyl fragment of polyketide origin.
- Exists as an equilibrating mixture of atropisomers (at C-3,7 bond).
- Documented instability tends to fragment at the weak N-O bond.
- No synthesis of 1 has been reported, although similar variants without the shikimate subunit have been prepared.
- Convergent, enantioselective preparation of 1 exploiting hidden symmetry, C–H functionalization, and radical retrosynthesis.

Retrosynthesis

B. Convergent, symmetry guided approach:

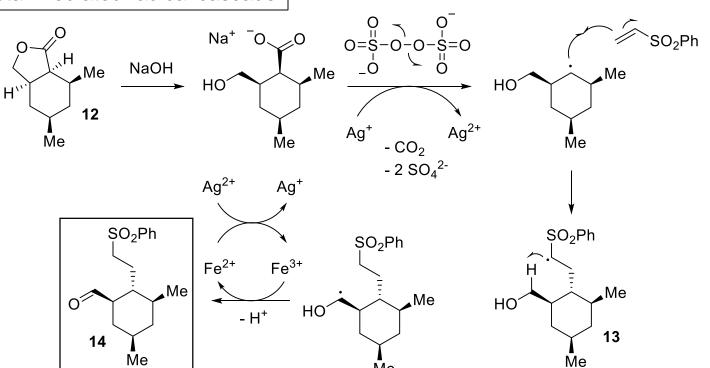


To maximize convergency, **1** is split down the middle at the pyridone ring, yielding fragment **5** derived from shikimic acid in previous reports, and fragment **6** which could be accessed through hydrogenation and desymmetrization of a mesitylene-derived carboxylic acid.

Me Me
$$(97\%)$$
 [gram scale] Me (97%) [gram scale] Me (97%) [gram scale] (97%) [gram sca

Stereoselective Hydrogenation

Amidation – Preparation of directing group



_{'Me} ÖMe

Me

Deamidation and lactone cyclization

Metal-mediated radical cascade

Ме

table 2 step 5 optimization cocatalyst yield 6% none Cu(OAc)₂ 22% 28% Co(CIO₄)₂ 48% Fe(OAc)₂ 71% Fe₂(SO₄)₃ 91%* * gram scale

Wittig Olefination

$$(O 14)$$
 $(Ph)_{Ph}$
 $(Ph)_{3}$
 $(Ph)_{4}$
 $(Ph)_{4}$
 $(Ph)_{4}$

$$\begin{array}{c|c}
 & O & O \\
 & HO & OH \\
\hline
 & Me \\
\hline
 & HO & OH \\
\hline
 & R & OH \\
\hline
 & MeO & R \\
\hline
 & R & OH \\$$

Me

Esterification and 1,2-diol protection CO₂Me CSA OΗ (cat.) P.T. 'OH O, ОН - H⁺ MeOH HO⁻ НО HO R HO camphorsulfonic acid CO₂Me CO₂Me Multi-step formation of epoxide √O, CF₃ HO R \$=0 CsOAc R^{OTf} **O**Tf - pyH⁺ ⁻OTf - ⁺OTf - DMAP Me^N `Me H_2O CO₂Me CO₂Me CO₂Me CO₂Me CO₂Me _O_ HO, H_2O '**≱**Br⁺ **LiHMDS** ĆΟ O \equiv **'**Br - H⁺ - Br 16

7

Mizuki, K.; Iwahashi, K.; Murata, N.; Ikeda, M.; Nakai, Y.; Yoneyama, H.; Harusawa, S.; Usami, Y. Synthesis of Marine Natural Product (-)-Pericosine E. *Org. Lett.* **2014**, *16*, 3760–3763.

Regioselective nucleophilic ring-opening of epoxide and Boc deprotection

17b

6

Di-acid activation, "Aza-Sakurai" cyclization, and final deprotection