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Abstract

In this paper, we formalize a market with a large number of compet-
ing production teams following Alchian and Demsetz (1974). We allow
for wide-spread externalities which can affect players’ payoffs. These ex-
ternalities include changes in market conditions and pollutions, and may
generate a variety of equilibrium outcomes. There are finite types of
atomless players, who can form team-firms with finite memberships using
available technologies. Given an arbitrary set of feasible partnership con-
tracts for each team type, we consider free entry equilibrium as our equi-
librium concept—in a free entry equilibrium, no team type can attract its
members from other teams by proposing any implementable partnership
contract. Furthermore, in a free entry equilibrium, players of the same
type may have different payoffs—unequal treatment of equals. We show
that as long as each firm type’s implementable payoff set is compact and
continuous in externality variables, there exists a free entry equilibrium.
We provide several applications of our results.
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1 Introduction

Market conditions affect firms’ organizational forms such as their choice of tech-
nologies, incentive schemes, and ownership structures: a change in a product
price can cause changes in firms’ ownership structure and technology choice,
and a change in agents’ outside options provided by the markets certainly can
affect firms’ incentive schemes through participation constraints. Firms’ organi-
zational forms also affect market conditions: changes in ownership structures of
firms cause changes in production efficiency, market prices, and agents’ outside
options. To analyze the simultaneous and endogenous nature of determining
market conditions and firms’ organizational forms in the markets, it is desirable
to have a systematic tool that can describe the interactions between these two.

This paper considers a model in which small team producers (organizations)
compete with one another in large markets. Each team is negligibly small,
but their policy choice in the aggregate affects market conditions such as price
and quantity, generating widespread externalities. Within a team its members
choose their actions (effort levels) given the team’s policy (contracts/partnership
agreement), and given the market prices and the outside options (in payoffs)
determined in the markets. In this sense, teams’ organizations and actions
influence one another only through changes in market conditions. We assume
that there are finite types of atomless players whose types are observable. A
team has a finite membership, each of its positions is assigned to a specific type
of players, and those players engage in production by contributing their efforts
to the team. We assume that the number of team types is also finite. With a
continuum of players, there is a resulting continuum of teams that compete in
the market. Thus, each team cannot have any influence on market conditions,
while a change in overall team structure can.

For convenience, we consider two stages although we are not considering
a multistage noncooperative game: in stage one, players are partitioned into
teams with various policies to form a team structure, and in stage 2, players
choose their actions optimally forming a market equilibrium allocation. Given
a team structure, we consider deviations of players who propose to form a new
team with a new policy as long as all members of it end in improved positions
compared to the ones they currently belong to given the market conditions. We
call a team structure a free entry equilibrium if there is no feasible team type
with any feasible policy that can deviate from the team structure by attracting
players to all positions of the team under the prevailing market conditions (for
example, market prices; more generally, widespread externalities). That is,
a free entry equilibrium endogenizes the organizations of teams and players’
actions and payoffs, which determine market conditions, and market conditions
affect the organization of teams. We will provide foundations for investigating
what partnership/contract structure emerges in such an environment.

Free entry equilibrium is a natural adoption of a solution concept from atom-
less cooperative games (the f-core in Kaneko and Wooders 1986) applied to our
industrial organization problem with endogenous production teams that offer
incentive contracts to team members. Unlike most existing applications of the
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f-core, we consider competing (intrateam) suboptimal contracts in the pres-
ence of free-riding incentives and moral hazard problems.1 We pinpoint the
constrained optimal contracts with endogenous participation constraints as the
surviving contracts when any feasible partnerships can enter and be utilized
in the market. One unique finding of this approach is that due to coexisiting
team contracts, in a free entry equilibrium the same type of players are not
necessarily receiving the same payoffs: some players of the same type may be
lucky to belong to teams that treat them well, but others may belong to teams
that can only offer lower payoffs. In particular, if the available contracts are
constrained with limited liability requirements or others, then the set of imple-
mentable payoff vectors may not satisfy comprehensiveness (freely disposable
payoffs). Thus, even if a type of worker in a team is getting a higher payoff than
their outside option, it may not be beneficial for the team to reduce her payoff.
Also, although we maintain the assumption of finite team types, the structure
of a type of teams can be complex enough to allow for subdivisions with various
structures of ownership (decision making) rights. This allows us to investigate
how vertical or lateral integrations emerge in markets following the literature
of incomplete contracts (Grossman and Hart 1986, Hart and Moore 1990, and
Hart and Holmstrom 2010), providing a general analytical tool for the literature
of an Organizational Industrial Organization proposed by Legros and Newman
(2013, 2014).

Our proof of the existence of free entry equilibrium is based on a standard
fixed point theorem, utilizing convexification of atomless population measures.
There are several difficulties to overcome. First, each team type’s feasible pol-
icy set can be highly nonconvex due to the second best nature of the problem.
Second, exactly due to the nonconvexity of feasible sets caused by limited li-
ability constraints and others, it is not necessary for players of the same type
to obtain the same payoffs even within the same teams. And third, even if the
same type players are getting the same payoffs, they may affect the widespread
externalities differently since externality variables are determined from the poli-
cies chosen by the teams. We will overcome the first issue by working on payoff
space as Kaneko and Wooders (1986) did, and by using an indirect step.2 We
start by defining an ”equal-treatment” free entry equilibrium which satisfies
all other conditions for free entry equilibrium such as feasibility constraints,
but in which players can dispose of payoffs if they are getting a higher payoff
than other players of their type (comprehensive covers). Since such an alloca-
tion is still immune to entry by any team with any policy, our approach is to
start by first finding an ”equal-treatment” free entry equilibrium and then con-
structing the actual unequal treatment equilibrium by returning the disposed
payoffs. The reason that we first impose an equal-treatment property is that
a fixed-point approach is easily applicable by considering a product mapping
assigning a weak-Pareto payoff vector to each team, while letting each type of

1With an exception of Legros and Newman (1996). See the literature review.
2Konishi and Simeonov (2025) provide a direct proof of the nonemptiness of the f-core

without assuming comprehensiveness. For the first point, we use their approach.
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players choose their favorite positions across team types.3 For the third point,
we need to connect each player type’s payoff with team types and their policies.
We work on the space of measures over the sets of policies, since the space of
measures is well-behaved even if the sets of feasible policies are nonconvex and
even disconnected. We can apply the Fan-Glicksburg fixed point theorem on
the space of measures following the distribution approach by Mas-Colell (1984)
and Jovanovich and Rosenthal (1988).4

The rest of the paper is organized as follows. In the next subsection, we
provide a brief review of some relevant literature of the paper. In Section 2, we
provide a simple Cournot market model with labor managed firms to illustrate
our equilibrium concept, free entry equilibrium. In Section 3, we present the
model, and introduce our equilibrium concepts formally. In Section 4, we prove
a general existence theorem of free entry equilibrium by working on the sets of
implementable allocations in payoff spaces. In Section 5, we conclude the paper
with applications, including a model of households in markets, and large team
contests with endogenous memberships.

1.1 A Brief Literature Review

Our free entry equilibrium is to require that no small individual team can suc-
cessfully deviate from the equilibrium allocation. This approach was originally
developed in Kaneko and Wooders (1986), which proved that the core of NTU
characteristic function games with atomless players of finite types is nonempty
when the cardinality of admissible coalitions is finite under very general con-
ditions.5 Hammond, Kaneko, and Wooders (1989) and Kaneko and Wood-
ers (1989) extended this result by allowing for wide-spread externalities in the
model in the context of an exchange economy with wide-spread externalities,
and showed the equivalence between market equilibrium and the f-core, while
the f-core and the standard Aumann core do not coincide. In contrast, our
paper allows for suboptimal allocations for teams subject to moral hazard (free-
riding) problems incentives, and the set of feasible payoff allocations for each
team may not satisfy comprehensiveness. We prove the existence of free entry
equilibrium by extending the proof of nonemptiness of f-core by Konishi and
Simeonov (2025) by keeping track of widespread externalities caused by formed
teams and their policies. Zame (2007) presented a comprehensive model of small
teams in a general equilibrium model with many commodities and a price sys-
tem under asymmetric information of not only moral hazard but also adverse

3This second “population mapping” ensures the weak Pareto optimality of the equilibrium
allocation. Beato and Mas-Colell (1985) showed that even if firm productions are operated on
the Pareto frontiers, the marginal cost pricing may not achieve (weak) Pareto optimality with
nonconvex technologies. We avoid this problem with atomless players and the free mobility
of players.

4Konishi and Simeonov (2025) prove the nonemptiness of the f-core without widespread
externalities by using Kakutani’s fixed point theorem. With widespread externalities we need
to work on space of measures.

5In a TU setup, Wang (2020) analyzed f-core with a continuum of types of agents, and
uncovered a link between f-core and transportation problem.
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selection.6 Unlike our model, Zame (2007) assumed a membership price system,
which implies that players face the need to pay upfront membership payment
regardless of what happens after they join their team: i.e., players are subject
to unlimited liability. In contrast, we allow for limited liability of players, which
can cause the same type players to be treated unequally if they join different
types of teams.

Recently, two papers showed the existence of stable matchings in large two-
sided matching markets using distribution approach. Geinecker and Kah (2021)
proved the existence of a stable matching of the marriage problem with a con-
tinuum of types.7 Carmona and Laohakunakorn (2024) considered many-to-one
market, allowing for players’ occupational choice (which side of the market they
belong to). They construct their model skillfully so that they only need to check
one side’s (manager-side) deviation incentives to check stability of a matching.
Allowing for multiple players belonging to a team, their paper is the most closely
related to our model, but there are notable differences. First, their paper re-
quires two-sided structure even though managers are the only players who can
deviate. In contrast, our model can handle coalitions such as labor managed
firms without having a single manager of a team without two-sided structures.
Second, Carmona and Laohakunakorn (2024) allow for allocations that match
one manager to finite workers such as school choice problem, or to a positive
measure of workers.8 In contrast, we focus on the former type finitely populated
teams following the modeling by Kaneko and Wooders (1986): our definition of
feasible assignments is based on their measure consistency assumption. Third,
we restrict our attention to the case of finite types of players, although Carmona
and Laohakunakorn (2024) allow for a very general player type space.

Konishi (2013) and Gersbach, Haller, and Konishi (2015) analyzed large
markets when clubs (gated communities) and households (composed of multi-
ple people) are endogenously formed and the members’ choices are subject to
local externalities. They proved existence of equilibrium by assuming that the
members of clubs and households collectively choose a Pareto efficient alloca-
tion. In order to find a Pareto efficient allocation for the members of a club or

6Ellickson et al. (1999) proved the existence and optimality of large market equilibria with
competing finite-membership efficient clubs, and Zame (2007) extended the former model by
allowing for firms that are subject to moral hazard and adverse selection. Allouch, Conley and
Wooders (2009) proved the existence and optimality of club equilibrium by using the results
of nonemptiness of the f-core in the economy with wide-spread externalities by Hammond et
al. (1989) and Kaneko and Wooders (1989).

7Greinecker and Kah (2021) consider the environment where every finite sample of the
model admits a stable matching, while we do not. The approaches are significantly different,
and it is not clear if we can use their approach to extend our model with an infinity of types
of agents.

8Carmona and Laohakunakorn (2025) investigate how two similar knowledge-based theo-
ries by Rosen (1982) and Garicano and Rossi-Hansberg (2004) draw starkly different stable
matchings using the model by Carmona and Laohakunakorn (2024). They conclude that the
difference comes from the fact that Rosen (1982) allows each manager to be matched with
unlimited number of workers, while Garicano and Rossi-Hansberg (2004) restrict the number
of workers. Carmona and Laohakunakorn (2025) discuss this point using the flexibility of
their model.
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a household, they assume quasiconcavity of payoff functions for all externality
variables and apply an existence theorem by Shafer and Sonnenschein (1975).
In contrast, in this paper, we work on payoff space instead of allocation space,
and we can drop quasiconcavity of payoff function completely. The strong ad-
vantage of this approach is that we do not need to select a (Pareto) optimal
allocation for a club or a household. Although the second best set of allocations
may be highly nonconvex, it could be much better-behaved in the payoff space.
By inventing the way to keep track of actual allocations that achieve a payoff
vector as an inverse mapping of payoff functions, we can prove the existence
of free mobility equilibrium with continuous payoff functions and compact sets
of feasible (implementable) allocations when there is no widespread externality.
With widespread externalities, we need somewhat restrictive additional con-
straints: in each team type, the set of implementable allocations in payoff space
is a continuous correspondence.9

This paper is also closely related to both organization economics and in-
dustrial organization. In their influential paper, Alchian and Demsetz (1972)
introduced the notion of team production in which several complementary re-
sources are used as input, and argued how a team organization problem can be
created depending on the ownership of the resources. Holmstrom (1982) proved
that the first best allocation cannot be achieved in general if all profits need
to be distributed within a team (partnership), while it can be done if there
is a residual claimant (principal-agent relationship). Starting from Grossman
and Hart (1986) and Hart and Moore (1990), the literature of incomplete con-
tracts analyzed how firm boundaries are determined by defining asset ownership
and control rights. Departing from single firm’s problems, Legros and Newman
(1996) considered many small team producers in a market, and showed that
different types (in their endowments) of agents participate in different forms of
contracts in equilibrium. However, they did not consider how team organizations
affect market conditions. Recently, Legros and Newman (2013, 2014) advocate
an organizational industrial organization (OIO), emphasizing that firms’ inter-
nal organizations can be important factors that determine firms’ conduct and
market conditions such as market price, quantity, and welfare.10 Our current
paper considers formation of organizational teams with widespread externalities

9What it means is that it is not sufficient to assume that the set of implementable alloca-
tions is an upper hemicontinuous—each type of feasible contracts should not vanish suddenly
with a change in widespread externalities. Zame (2007) avoided this problem by assuming the
set of feasible contracts is ex ante given, and is finite. Legros and Newman (1996) considered
optimal contract as a function of market and cost parameters, but they do not endogeneize
these parameters as wide-spread externalities. We will need continuity of implementable poli-
cies, which could be a problem in generalizing the approach by Legros and Newman (1996)
in our setting.

10Hart and Holmstrom (2010) considered a model in which final products are produced
with two complementary inputs provided by two suppliers with noncontractible production
decisions, and analyzed the organizational problem arisen from a conflict of interests of input
suppliers. Using a perfectly competitive market with the Hart-Holmstrom-type organiza-
tional problem, Legros and Newman (2013) showed that organizational forms and market
price interact with each other, and heterogeneous organizations can coexist differing in their
performance.
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including market conditions, thus it could provide a useful theoretical founda-
tion for the OIO models.

Finally, we relate this paper to a companion paper on stable team structure
written by the same authors. Konishi, Pan, and Simeonov (2025) consider a
Tullock contest played in an L team sport league, where each team has players
in M positions and they engage in contributing efforts to win a prize. The
winning team distributes the prize among the team member players according
to a sharing rule based on their positions. In this problem, stable team structures
of the league are analyzed when players can switch their teams (and positions)
through headhunting.11 Konishi et al. (2025) compare egalitarian and highly
differential sharing rules, and demonstrate that there are tradeoffs between intra
and inter-team inequalities. Unfortunately, it is not easy to show a general
existence of stable team structure due to the discreteness of the problem. Here,
our approach provides a remedy by replicating the leagues.

2 An Example: Labor Managed Firms

In order to illustrate our model and equilibrium concept (free entry equilib-
rium), we present a Cournot market example with labor managed firms (a simple
partnership contract). Consider two types of workers 1 and 2 with population
mass ν̄1 and ν̄2 with ν̄1 = 1 < ν̄2 = 2, and a CES team production technol-

ogy f(e1, e2) = (e
1
3

1 + e
1
3

2 )
2

, where ei ≥ 0 is worker i’s effort in a firm i = 1,2.

This means that there are complementarities between these two workers’ efforts.
Workers’ cost of making effort is linear: ci(ei) = ei. Each team firm can choose
its proportional sharing rule (θ1, θ2). The inverse demand function is described
by p = 1−Y . Under the market price p, if a firm’s sharing rule is (θ1, θ2), worker
i = 1,2 solves:

max
ei

θipf(ei, ej) − ei,

and worker i’s equilibrium payoff and output level are (see Appendix):

ui =

⎧⎪⎪
⎨
⎪⎪⎩

4θi
9
(θ

1
2

1 + θ
1
2

2 )
4

−
8θ

3
2

i

27
(θ

1
2

1 + θ
1
2

2 )
3⎫⎪⎪
⎬
⎪⎪⎭

× p3,

and

y = {
4

9
(θ

1
2

1 + θ
1
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4

}p2,

respectively. Note that both ui and y are multiplicatively separable in p. Plot-
ting (u1, u2) in the payoff profile space for all θ1 ∈ [0,1], we have the red curve
(adjusted by 1

p3 ) (see Figure 1). When θ1 = 1 (θ2 = 0), the equilibrium payoff

allocation is A1, and it moves along the curve as θ1 decreases (θ2 increases),

11Kobayashi, Konishi, and Ueda (2025) consider a single team’s optimal sharing rule in a
generalized group contest problems with effort complementarities without considering players’
mobility.
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and reaches A2 when θ1 = 0 (θ2 = 1). Note that there are trivial variants of the
above technology: solo teams without a partner. Figure 1 includes these cases
as they correspond to A1 (type 1 only) and A2 (type 2 only).

We first analyze a feasible allocation that satisfies an equal treatment prop-
erty, which we may call a free mobility equilibrium. Since ν̄1 = 1 < ν̄2 = 2,
measure ν̄2 − ν̄1 = 1 type 2 players get the solo team payoff u2 = 0.148p

3 at point
A2. Thus, to be a free mobility equilibrium, any type 2 player in a two person
team should also get u2. In order to achieve this, two person teams achieve

point B by choosing (θfm1 , θfm2 ) = (0.857,0.143). Thus, a measure 1 of type 2
workers choose A2, and a measure 1 of pairs of types 1 and 2 choose B in the
free mobility equilibrium.

Figure 1

Now, we turn to our equilibrium concept: a free entry equilibrium requires
that there is no firm with a feasible policy (sharing rule) that can break the
equilibrium partenrship strucuture by attracting players to all positions of the
team. Is the above free mobility equilibrium a free entry equilibrium? It is not.
Workers in a team firm can be better off by reducing θ1 to incentivize type 2
workers, since at B the curve is still upward sloping. Let us calculate θ1 that
maximizes u1. Solving ∂u1

∂θ1
= 0, we obtain (θ1opt1 , θ1opt2 ) = (0.687,0.313), and

the resulting allocation is point C: (u1opt
1 , u1opt

2 ) = (0.683p3,0.378p3). Since

(u1opt
1 , u1opt

2 ) > (ufm
1 , ufm

2 ), both players in the team are better off in a Pareto
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manner by reducing θ1 from θfm1 = 0.857 to θ1opt1 = 0.687 (see Table 1).

(θ1, θ2) y (u1, u2)

(1,0) 0.44p2 (0.148p3,0) A1 (solo)
(0.857,0.143) 1.28p2 (0.580p3,0.148p3) B
(0.687,0.313) 1.65p2 (0.683p3,0.378p3) C

(0.5,0.5) 1.78p2 (0.593p3,0.593p3) surplus max

Table 1: equilibrium payoff curve

Although there are still measure 1 of type 2 players who receive payoff 0.148p3 by
working alone, the other measure 1 of type 2 players receive 0.378p3 by deviating
from the free mobility equilibrium. This is the free entry equilibrium payoff
profile (points A2 and C). Despite this apparent violation of equal-treatment
property, no firm can enter profitably (no further deviations), since all type 1
players are already getting the highest possible payoffs, and they will not be
attracted by any other offers. Can we have any other free entry equilibrium?
The answer is no, since if two-person teams are not choosing the type 1-optimal
sharing rule, there will be teams entering the market with the type 1-optimal
sharing rule, attracting type 1 players employed by two-person teams and self-
employed type 2 players. Thus, in this example, free entry equilibrium is weakly
Pareto efficient, unique, and does not satisfy equal treatment of equals.

So far, we took market price p as given, focusing on individual firms’ behav-
iors.12 However, a firm’s sharing rule (policy) (θ1, θ2) affects the firm’s output
level y. Thus, as many firms adopt a new policy, the market equilibrium price
will be affected through a change in the total output level Y through inverse
demand p = 1 − Y . For example, moving from free mobility equilibrium alloca-
tion (points A2 and B) to free entry equilibrium allocation (points A2 and C)
increases the total output and reduces the market price. The following table
compares equilibrium payoff vectors taking this effect into account.

Y p (uteam
1 , uteam

2 , usolo
2 )

solo only 0.88p2 0.569 0.0272
free mobility 1.72p2 0.525 (0.0839,0.0214,0.0214)
free entry 2.09p2 0.493 (0.0818,0.0453,0.0177)

transferrable utility 2.22p2 0.483 (0.117,0.0167,0.0167)
Table 2: with wide-spread externalities

An interesting observation is the force of wide-spread externalities regarding the
market price of the product. In a free mobility equilibrium, team production
is inefficient due to the uneven sharing rule for type 1. So, each team has
an incentive to revise their sharing rule to improve their payoffs in a Pareto
manner. However, as all teams revise their sharing rules, the market output
level increases, dropping the market price. As a result, type 1 workers’ payoffs
eventually goes down due to this effect.13

12Note that in this example, players’ payoffs are affected by market price that is conveniently
multiplicatively separable. This property does not hold in general, but we can find a free entry
equilibrium in a different way.

13It is similar to the Braess paradox in transportation economics.
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Lastly, we highlight a difference between our equilibrium concept and the
ones in the general equilibrium literature. What if team members can transfer
their payoff (transferrable utility) in the form of type-dependent (positive and/or
negative) membership fees? That is, before a production team is formed, the
team requires from its workers a membership fee (and a sign-up fee or bonus)
to join the team, and then, workers play their effort contribution game. Since
our economy is quasi-linear, the membership fees do not affect the workers’
equilibrium effort contributions for the same (θ1, θ2). Since the pie is maximized
at θ1 = θ2 =

1
2
, the total payoff is 0.593p3 × 2 = 1.186p3. Since there are type 2

workers getting u2 = 0.148p
3, the equilibrium membership fee for type 2 workers

is T2 = 0.593p3 − 0.148p3 = 0.445p3, which will be used as a sign up bonus
(membership subsidy) for type 1 workers: −T1 = 0.445p3. This is point D,
which is the equilibrium by Zame (2007). Thus, type 2 workers get u2 = 0.148p

3,
irrespective of the types of firms they belong to, while type 1 workers get u1 =

0.593p3 + 0.445p3 = 1.038p3 (points A2 and D).

3 The Model

Consider a general team formation model with widespread externalities. Widespread
externalities p can be market prices, pollution, or other forms of externalities
such as distributions of teams to be matched with. We assume that P is a
compact subset of an L-dimensional Euclidean space P ⊂ RL, and p ∈ P is taken
as given by each player and team. Teams can engage in activities by recruit-
ing players who can provide heterogeneous services (actions and labor efforts)
depending on their types (distinguished by their ability, marginal cost of effort
etc). Within each team players engage in a game (an effort contribution game
or some other game). We assume that the set of player types T is finite and that
each type t ∈ T has a continuum of players with a Borel measure ν̄t > 0. The
total population of players has measure ∑t∈T ν̄t. We assume that players’ types
are observable by teams (or other team members). Thus, there is no adverse
selection problem in our model.

First, we define a team type γ as a list of technology f ∈ F , finite positions
Mf , each to be filled by a single player, and a task assignment function α ∶
{1, ...,Mf} → T specifying which type of player is to be assigned to each position.
We assume that F is a finite set. Due to technological constraints, each position
is open to a subset of types of players (for example, technical positions are only
for technical player types). This limits the set of feasible assignments α for
technology f ∈ F .14 A representative team type γ is a pair (f,α), and the set
of all feasible team types is denoted by Γ.15 For convenience, team type γ’s
technology and assignment rule are denoted by γ ≡ (fγ , αγ) with Mγ = Mfγ

.
Since both T and F are finite, this ensures that the set of team types Γ is also

14If position m of technology f can be assigned to player types t and t′, then we prepare
two different assignment function α and α′ with α(m) = t and α′(m) = t′.

15Even with the same technology f , if two different assignment rules α and α′ are used (i.e.,
α(m) ≠ α′(m) for some m = 1, ...,Mf ), then (f,α) and (f,α′) are two different team types.
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finite.
Each team of team-type γ ∈ Γ chooses a policy θγ ∈ Θγ , which is a compact

subset of an Euclidean space. A distribution of teams of type γ over their
allocations is described by a Borel measure µγ over Θγ . Thus, the total measure
of teams of type γ is µγ(Θγ), and the total measure of teams is ∑γ∈Γ µ

γ(Θγ).
We define a team distribution to be the full profile of these measures µ = (µγ)γ∈Γ.

Let Mγ be the set of Borel measures on Θγ , and M ≡ ∏γ
∈ΓM be the set of all

measure profiles on Θ ≡ ∏∈ΓΘ
γ .

LetMγ = {(m,γ) ∶m ∈ {1, ...,Mγ}} be the set of all positions of team type
γ ∈ Γ, and letM= ⋃γ∈ΓM

γ be the set of all positions across all admissible team
types. Also, letMt = {(m,γ) ∶ αγ(m) = t for some γ ∈ Γ, (m,γ) ∈ Mγ} be the
subset of all positions occupied by type t players. Clearly, {Mt}

t∈T
is a partition

of M. For each (m,γ) ∈ M, let t(m,γ) be the player type that is assigned to
position m: i.e., αγ(m) = t. We assume that for each type t ∈ T , there is a

trivial single-member team type γt ∈ Γ such that Mγt

= 1 and αγt

(1) = t. The
payoff obtained from joining γt can be regarded as an outside option for type
t. For convenience, let Γsngl ≡ {γ

t}
t∈T

be the set of all singleton teams, and

let Γteam ≡ {γ ∈ Γ ∶M
γ ≥ 2} be the set of multiple-member teams.16 Obviously,

{Γsngl,Γteam} is a partition of Γ.
For each γ ∈ Γteam, and each m ∈ {1, ...,Mγ}, the distribution of type t(m,γ)

players over team type γ’s policies Θγ is described by a measure νγm over Θγ :
i.e., νγm(Θ

γ) is the measure of type t(m,γ) players who occupy team-type γ’s
mth position.

Finally, we adopt “measure consistency” assumption in Kaneko and Wood-
ers (1986, pp. 108-109), which requires that population measure of players is
preserved in one-to-one functions in order to make sense economically. We will
build this requirement in the definition of feasible assignments.

Definition 1. A feasible assignment is a list ((νγm)m∈Mγ ,γ∈Γ , (µ
γ)γ∈Γ) such

that (i) ∑(m,γ)∈Mt νγm(Θ
γ) = ν̄t for all t ∈ T , and (ii) for any measurable subset

S ⊆ Θγ , ν1(S) = ... = νMγ (S) = µγ(S) holds for all γ ∈ Γ.

The interpretation of this assignment is that there is a measure µγ of type
γ teams hiring a measure νγm = µγ of players for each position m ∈ Mγ . The
feasibility of the assignment is described by (i), the market balance condition
for each type of players.

In order to describe feasible allocations, we introduce a few more definitions.
We do not specify a concrete game played in team type γ under policy θγ . In-
stead, we assume that (1) for each team type γ ∈ Γ, and each m = 1, ...,Mγ ,
there is a continuous payoff function uγ

m ∶ Θ
γ × P → R for type t = t(m,γ)

players; (2) there is a feasible policy correspondence Zγ ∶ P ↠ Θγ , which is
nonempty-valued, compact and continuous; and (3) there is a widespread ex-
ternality function φ ∶ M × P → P that is continuous.17 Let uγ ∶ Θγ × P → RM

γ

16Teams with homogeneous type of players belong to Γteam.
17Extending this to a correspondence, we can cover market price vector as a widespread

(pecuniary) externalities: see the application section 5.2.
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be team γ’s payoff profile function such that uγ(θγ , p) ≡ (ut(m,γ)(θ
γ , p))M

γ

m=1.
Clearly uγ is a continuous function.

Definition 2. A feasible allocation is a list (p, (νγm)m∈Mγ ,γ∈Γ , (µ
γ)γ∈Γ) such

that (i) ((νγm)m∈Mγ ,γ∈Γ , (µ
γ)γ∈Γ) is a feasible assignment, (ii) µγ(Θγ/Zγ(p)) = 0

for all γ ∈ Γ, and (iii) p = φ (µ, p) holds.

Our main equilibrium concept in this paper is a free entry equilibrium in
which no new team can attract all workers needed to fill the positions with
any feasible contract/policy. The next equilibrium concept takes the following
equilibrium output and equilibrium payoff allocation mappings uγ ∶ Θγ × P →
RMγ

+ as given.

Definition 3. A feasible allocation (p, (νγm)m∈Mγ ,γ∈Γ , (µ
γ)γ∈Γ) is a free entry

equilibrium if there is no pair (γ, θγ) ∈ Γ×Zγ(p) such that for allm ∈ Mγ , there

are (m′, γ′) ∈ Mt(m,γ), and S ⊂ Zγ′(p) with µγ′(S) > 0 such that uγ
m(θ

γ , p) >

uγ′

m′(θ
γ′ , p) in S almost everywhere.

The reason that we require µγ′(S) > 0 in the above definition is to make
sure that an equilibrium allocation is immune to coalitional deviations that can
improve a non-negligible number of players. Note that the definition of free
entry equilibrium does not require that the same type players receive identical
payoffs in equilibrium.18

4 Existence of Free Entry Equilibrium

Here, we will prove the existence of free entry equilibrium. As we discussed in
the introduction, it is more convenient to work on payoff spaces of player types
than on teams’ policy spaces. This is because the set of each team type’s fea-
sible policy set is highly nonconvex, while (a comprehensive cover of) the weak
Pareto frontier in the payoff space is essentially homeomorphic to a simplex that
is compact and convex.19 Obviously, it is not enough for us to work on the sets
of weak Pareto frontiers, since we would like to allow for limited liability con-
straints, which may not permit bringing down payoffs by simply disposing them
(see Figure 1). However, there is a remedy for this. We consider hypothetical
allocations that allow for free disposal of payoffs keeping all other feasibility
requirements intact. Then we find an equal treatment free entry equilibrium
in this expanded feasible set. What we need is that there is no potential team
type that can improve on the desired allocation strictly. Thus, if we can assign

18As is seen from our example, there may not be feasible equal treatment allocation.
19This method has been used in Konishi and Simeonov (2025) in proving nonemptiness

of the f-core in an atomless characteristic function form game introduced by Kaneko and
Wooders (1986). In contrast, here we work on a model that is readily applicable to a variety
of concrete economic problems with widespread externalities, which requires us to keep track
of the policy distributions of all team types.
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a weakly Pareto efficient allocation to each potential team type γ with this ex-
panded feasibility in which players are choosing their most favorite positions,
then such an allocation is immune to any potential entry of a team type with
(strictly-improving) feasible policy. Thus, if we find a feasible allocation that
is a fixed point of such position choice problem, then it would be a (locally)
weakly Pareto-undominated free entry equilibrium.20 To see this, note that for
a team-type γ to improve upon such an allocation, it must prepare a strictly
higher payoff than the equilibrium payoff for each of its members. Since ev-
ery team type γ offers a weakly Pareto efficient payoff vector, there cannot be
strictly improving deviation from such an allocation, and it must be a free entry
equilibrium.

In the following, we expand the notion of feasibility by allowing for disposal
of payoffs (comprehensiveness) as a device. With this device, the weak Pareto
frontier of team type γ becomes connected and is contractible in its interior so
that we can apply a fixed point theorem easily.

Definition 4. An equal-treatment allocation under comprehensiveness
(p, (u∗t )t∈T , (ν

γ
m)m∈Mγ ,γ∈Γ , (µ

γ)γ∈Γ) is a pair of a payoff profile (u∗t )t∈T and a

feasible allocation (p, (νγm)m∈Mγ ,γ∈Γ , (µ
γ)γ∈Γ) such that for all types t ∈ T ,

∑(m,γ)∈Mt νγm({θ
γ ∈ Zγ(p) ∶ ut(θ

γ , p) ≥ u∗t }) = ν̄t holds. Such a payoff profile
(u∗t )t∈T is called an equal treatment payoff profile.

Note that if (u∗t )t∈T is an equal treatment payoff profile, any (u′t)t∈T ≤
(u∗t )t∈T is an equal treatment profile. This proves convenient for Lemma 2 be-
low. Obviously, only the highest equal treatment payoff profile will eventually
matter in constructing a free entry equilibrium.

Definition 5. An equal-treatment free entry equilibrium under com-
prehensiveness is an equal treatment allocation under comprehensiveness
(p, (u∗t )t∈T , (ν

γ
m)m∈Mγ ,γ∈Γ , (µ

γ)γ∈Γ) such that there is no pair (θγ , γ) with γ ∈ Γ
and θγ ∈ Θγ , for which uγ

m (θ
γ , γ) > u∗t(m,γ) holds for all m = 1, ...,M

γ .

Once the existence of an equal-treatment free entry equilibrium under com-
prehensiveness is proven, it also implies that there is a free entry equilibrium
(see Definition 3). In Figure 1, an equal-treatment free entry equilibrium under
comprehensiveness corresponds to points A2 and E, and a free entry equilibrium
corresponds to points A2 and C. If there is an equal treatment free entry equi-
librium under comprehensiveness, then clearly (i) there is a (unequal-treatment)
feasible allocation, and (ii) it is immune to improvement by any team type γ via
any θγ , since in such a feasible allocation, all types of players are getting at least
(u∗t )t∈T almost everywhere. Thus, it is automatically a free entry equilibrium.

We first define feasible payoff allocations for each team type γ ∈ Γteam by
keeping track of feasible policies that achieve each feasible payoff vector.21 Let

20With widespread externalities, even if there is no profitable deviations by finite teams
given p, there may be a profitable positive measure deviation coordinated by a mass of teams.

21For a singleton teams γt
∈ Γsngl, the maximum payoff level for the member uγt

(p) is
uniquely determined.
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team type γ’s weak Pareto policy correspondence Θγ
WP ∶ P↠ Θγ be such that

Θγ
WP (p) ≡ {θ

γ ∈ Zγ(p) ∶ ∄θγ′ ∈ Zγ(p) such that uγ(θγ′, p) ≫ uγ(θγ , p)}. Simi-

larly, let V γ
WP ∶ P↠ RMγ

be team type γ’s weak Pareto payoff correspondence

such that V γ
WP (p) ≡ u

γ(Θγ
WP (p)). Let V̄

γ ∶ P↠ RMγ

be a comprehensive cover

correspondence of V γ
WP such that V̄ γ(p) ≡ {uγ ∈ RMγ

+ ∶ uγ ≤ ũγ for some ũγ ∈ V γ
WP (p)}

for all p ∈ P. (See Figure 2.)
We will need to treat singleton teams separately for a normalization pur-

pose. A singleton team γt ∈ Γsngl has a unique maximum payoff uγt
∗(p) ≡

maxθγt
∈Zγt

(p) u
γt

(θγ
t

), Θγ
WP (p) ≡ argmaxθγt

∈Zγt
(p) u

γt

(θγ
t

), and V γt

WP (p) ≡

uγt
∗(p). Since Zγt

is a continuous correspondence and uγt

is a continuous func-

tion, V γt

WP (p) ≡ u
γt
∗(p) is a continuous function, Θγ

WP (p) is a nonempty-valued
and upper hemicontinuous.

From now on, we will denote a K-dimensional simplex by ∆K .

Figure 2

Lemma 1. Suppose that for all γ ∈ Γteam, and all positions m of team type
γ, type t = t(m,γ)’s indirect payoff function uγ

m(θ
γ , p) is continuous in (θγ , p).

Then, Θγ
WP ∶ P ↠ Θγ has a closed graph, and V̄ γ ∶ P ↠ RMγ

is a continuous
correspondence.

Proof. We first show that Θγ
WP (p) has a closed graph. Pick any {pk}

∞

k=1
→ p̄

and any {θγk}
∞

k=1
such that θγk ∈ Θγ(pk) for each k = 1,2, ... Since Θγ is a

compact set, we can select a convergent subsequence of {θγk}
∞

k=1
. Relabeling

k’s, we have {pk}
∞

k=1
→ p̄ and {θγk}

∞

k=1
→ θ̄γ , where θγk ∈ Θγ

WP (p
k) for each

k = 1,2, .... Then, for each k, for any θγk′ ∈ Θγ
WP (p

k), there is m ∈ Mγ such
that uγ

m(θ
γk′, pk) ≤ uγ

m(θ
γk, pk). Since Mγ is finite, we have by continuity
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limk→∞ uγ
m(θ

γk′, pk) = uγ
m(θ̄

γ′, p̄) ≤ limk→∞ uγ
m(θ

γk, pk) = uγ
m(θ̄

γ , p̄) for some
m ∈ Mγ . This proves that the weak Pareto policy correspondence Θγ

WP ∶ P↠
Θγ has a closed graph property.

By continuity of uγ and the closed graph property of Θγ
WP , V

γ
WP has a closed

graph property as well.
Since V γ

WP has a closed graph, V γ
WP is upper hemicontinuous and V̄ γ is

upper hemicontinuous. We can show that V̄ γ is lower hemicontinuous as well.
Suppose that uγ ∈ V̄ γ(p̄), then there is ũγ ∈ V γ

WP (p̄) such that ũγ ≥ uγ . Let

eγ ≡ ũγ − uγ ≥ 0. Let {pk}
∞

k=1
→ p̄. Since ũγ ∈ V γ

WP (p̄), there are θ̄γ ∈ Θγ
WP (p̄)

and {θγk}
∞

k=1
→ θ̄, then by continuity of uγ , there is a sequence {ũγk}

∞

k=1
→ ũγ

by setting ũγk = uγ(θγk, pk). Since V̄ γ(p) = V γ
WP (p) + R

Mγ

− , by setting uγk =

ũγk − eγ ∈ V̄ γ(pk) for all k = 1,2, ..., we have {uγk}
∞

k=1
→ uγ . Hence, V̄ γ is lower

hemicontinuous, thus V̄ γ is a continuous correspondence.∎

Let θ̄γWP ∶ R
Mγ

× P↠ Θγ with θ̄γWP (u
γ , p) ≡ {θγ ∈ Θγ

WP (p) ∶ u
γ(θγ , p) ≥ uγ}

be a weakly Pareto efficient policy mapping that achieves payoff profile uγ or
higher. This mapping connects the payoff space and the policy space, showing
which policies can achieve each feasible payoff allocation. It is important since
market price p is affected by the policies adopted by teams.

Lemma 2. Suppose that for all γ ∈ Γteam, and all positions m of team type
γ, type t = t(m,γ)’s indirect payoff function uγ

m(θ
γ , p) is continuous in (θγ , p).

Then, θ̄γWP ∶ R
Mγ

× P↠ Θγ is nonempty-valued and has a closed graph.

Proof. Note that θ̄γWP (u
γ , p) ≡ {θγ ∈ Θγ ∶ uγ(θγ , p) ≥ uγ} ∩Θγ

WP (p). Since uγ

is a continuous function and Θγ
WP has a closed graph, θ̄WP has a closed graph.∎

We can regard ((V̄ γ(p))
γ∈Γ

, (ν̄t)t∈T ) as an atomless nontransferable utility

game given p ∈ P. Let ∂V̄ γ(p) ≡ {uγ ∈ V̄ γ(p) ∶ ∄ũγ ∈ V̄ γ(p) s.t. ũγ ≫ uγ} be the

weak Pareto frontier of V̄ γ(p).
We will normalize ((V̄ γ(p))

γ∈Γ
, (ν̄t)t∈T ) utilizing singleton teams’ payoffs.

For each singleton team γt ∈ Γsngl, set ûγt

(p) = 1 for all t ∈ T and all p ∈ P.
For all γ ∈ Γteam, all m = 1, ...,Mγ , and all θγ ∈ Zγ(p), define ûγ

m(θ
γ , p) ≡

uγ
m(θ

γ , p) − uγt(m,γ)

(p) + 1, and rename it uγ
m(θ

γ , p) for normalization so that
uγ
m(θ

γ , p) ≥ 1 is the individual rational payoffs for type t = t(m,γ). This is
a continuous function by Lemma 2. We set each player’s individual rational
payoff at 1 to ensure the existence of allocations that attain less payoffs than
the individually rational level in the positive orthant of each team γ’s payoff
space. For all γ ∈ Γteam, let V̄ γ(p) = RMγ

− if V̄ γ(p) ∩ RMγ

+ = ∅ holds. Note
that no type t wants to choose such γ ∈ Γteam, since a singleton γt dominates

γ, noting uγt

(p) = 1.
Although we will work on a weak Pareto frontier of team type γ ∈ Γteam

to assign a weakly Pareto efficient payoff vector to γ, the weak Pareto frontier
itself can be highly nonconvex, and it may not be easy to work with. Thus, we
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introduce an abstract policy set Xγ ≡ ∆Mγ

, which is compact and convex,
and its interior set intXγ ≡ {xγ ∈Xγ ∶ xγ ≫ 0}. We have the following result.

Lemma 3. For all γ ∈ Γteam, there exists a continuous function wγ ∶ intXγ×P→
RMγ

++ such that for each p ∈ P with V̄ γ(p) ≠ {0}, wγ(⋅, p) ∶ intXγ → ∂V̄ γ(p)∩RMγ

++

is one-to-one and onto function.

Proof. Let an artificial welfare function hγ ∶ RMγ

+ × intXγ → R+ with welfare

weights ( 1
xγ
m
)
m∈Mγ

be hγ(uγ , xγ) =minm∈Mγ { 1
xγ
m
uγ
m}−δmaxm,m′∈Mγ ∣ 1

xγ
m
uγ
m −

1
xγ

m′
uγ
m′ ∣,

where δ > 0 is a small number. This is a Leontief-type welfare function with a
slight perturbation, and is continuous in (uγ , xγ) (see Figure 3). Let the payoff
profile function from an abstract policy wγ ∶ intXγ × P → RMγ

+ be such that
wγ(xγ , p) ≡ argmaxuγ∈V̄ γ(p) h

γ(uγ , xγ). Since V̄ γ is a compact-valued and con-
tinuous correspondence by Lemma 1, Weierstrass’s theorem and Berge’s max-
imum theorem apply, and wγ is nonempty-valued and upper hemicontinuous.
Since V̄ γ(p) is comprehensive, wγ(xγ , p) is singleton for any xγ ∈ intXγ , wγ is a
continuous function. The perturbation term of hγ with δ > 0 ensures the unique
solution for this maximization problem. Now, fix p ∈ P. For all xγ ∈ intXγ ,
there is only one uγ ∈ ∂V̄ γ(p) ∩RMγ

++ is assigned by wγ(⋅, p). Conversely, for all
uγ ∈ ∂V̄ γ(p)∩RMγ

++ , xγ ≡ uγ

∣uγ ∣
∈ intXγ achieves uγ = argmaxũγ∈∂V̄ γ(p) h

γ(ũγ , xγ).

Thus, we conclude that wγ(⋅, p) ∶ intXγ → ∂V̄ γ(p)∩RMγ

++ is one-to-one and onto
function.∎

Figure 3

Lemma 3 says that wγ
m(x

γ , p) can be regarded as a payoff function of player
m from abstract policy xγ . We will use the wγ function to assign a weak Pareto
payoff vector for each member of team γ ∈ Γteam. Let X̂γ ≡ {xγ ∈Xγ ∶ xγ

m ≥ ϵ}
where ϵ > 0 is small enough that for all γ and p, such that there exists m =

1, ...,Mγ such that wγ
m(x

γ , p) < 1 = uγt(m,γ)

(p) holds for all xγ ∈ Xγ/X̂γ . Note
that xγ ∈ Xγ/X̂γ is an irrelevant abstract policy since at least one player gets
less than her individually rational payoff.
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For completeness, we describe allocations for (i) γ /∈ Γteam, and (ii) γ ∈ Γteam

but V γ(p) = {0}. Case (i) corresponds to singleton teams γt ∈ Γsngl. For all

t ∈ T , and all p ∈ P, uγt

(p) = 1, and θ̄γ
t

WP (1, p) ≡ argmaxθγt
∈Zγt

(p) ut(θ
γt

, p),

which is upper hemi continuous in p. (This mapping assigns policies for each
p ∈ P.) Although the abstract policy for a singleton team is singleton, we let

X̂γt

be without truncation: X̂γt

≡ {1} ≡ Xγt

= ∆1 and wγt

(1, p) = uγt

(p) = 1,
which is a constant mapping (so continuous). Case (ii) is a trivial case that no
player wants to choose such team γ.

Theorem 1. Suppose that for all γ ∈ Γ, and all positionsm of team type γ, type
t = t(m,γ)’s indirect payoff function uγ

m(θ
γ , p) is continuous in (θγ , p), external-

ity function φ(p,µ) is nonempty-valued and continuous in (p,µ), and feasible
policy correspondence Zγ(p) is nonempty-valued and continuous in p. Then,
there exists an equal-treatment free entry equilibrium under comprehensiveness.

Proof. We prove the theorem by a fixed point theorem. Our fixed point
mapping has five components: The first one is a population mapping βt which
assigns type t players to the highest payoff positions for type t, and its Cartesian
product β ≡ Πt∈Tβ

t. The second is a policy mapping ϕγ which assigns the
smallest abstract policy to positions that have the highest population in team
type γ, and we let its Cartesian product be ϕ ≡ Πγ∈Γϕ

γ . The third is a team-
type measure mapping generated from population distribution over the positions
of each team type. The fourth is a abstract policy mapping, which assigns
individually irrational payoffs to overpopulated positions. The last mapping is
a simple price determination mapping.

We start with a population mapping for type t ∈ T . Consider any given
profile of abstract policies adopted by teams x = (xγ)γ∈Γ together with any
price p. Note that we list all team types γ ∈ Γ even if their measure is zero.
Consider a mapping from a pair of abstract policy profile x and externality
variable p to a payoff profile for all team types and positions u = (uγ

m)(m,γ)∈M.

Lemma 3 assures that w ∶ ∏γ∈Γ X̂
γ × P → RM+ is a continuous function. We

partition w based on player type assigned to each position of a team type: a
list of payoffs from positions for each type t ∈ T is described by

wt
(x, p) = (wγ

m(x
γ , p))(m,γ)∈Mt

where Mt = {(m,γ) ∶ αγ(m) = t for some γ ∈ Γ, (m,γ) ∈ Mγ}. Note that
∪t∈TM

t = ∪γ∈ΓM
γ holds.

Let βt ∶ ∏γ∈Γ X̂
γ × P → (ν̄t∆M

t

) be population mapping of type t players

such that

βt
(x, p) = {nt

∈ ν̄t∆M
t

∶ nt
∈ argmax

nt
∑

(m,γ)∈Mt

nt
(m,γ)w

γ
m(x

γ , p)}

where nt
(m,γ) ≡ ν(m,γ)(Θ

γ) is the measure of type t players assigned to posi-

tion (m,γ) ∈ Mt, and ∑(m,γ)∈Mt nt
(m,γ) = ν̄

t. Since ∑(m,γ)∈Mt nt
(m,γ)w

γ
m(x

γ , p)

is a continuous function in (xγ , p, nt), mapping βt is nonempty-valued, upper
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hemicontinuous, and convex-valued. By construction, βt(x, p) assigns type t
players’ population to the positions bringing them the highest equilibrium pay-
off. Taking the Cartesian product across types β(x, p) = ∏ t∈Tβ

t(x, p), we have

our population mapping β ∶ ∏γ∈ΓX
γ × P →∏t∈T (ν̄

t∆M
t

), which is nonempty-

valued, upper hemicontinuous, and convex-valued.
Now, we turn to our abstract policy mapping for each γ ∈ Γ. Let nγ ∈ RM

γ

+

be a population distribution in γ. In a feasible assignment, we need to have
nγ
m = nγ

m′ for all m,m′ ∈ Mγ . Towards this goal, for each γ ∈ Γ, define ϕγ ∶

RM
γ

+ → X̂γ such that

ϕγ
(νγ) = {xγ

∈ X̂γ
∶ xγ
∈ argmin

xγ
∑

m∈Mγ

xγ
mnγ

m} ,

where ϕγ mapping assigns xγ
m = ϵ for the most populated positions m unless

nγ
m = nγ

m′ holds for all m,m′ ∈ Mγ (otherwise, ϕγ(νγ) = X̂γ holds).22 Since

∑
Mγ

m=1 x
γ
mnγ

m is a continuous function in (xγ , nγ), mapping ϕγ is nonempty-
valued, upper hemicontinuous, and convex-valued. Taking the Cartesian prod-
uct across types ϕ(ν) = ∏ γ∈Γϕ

γ(nγ), we have our abstract policy mapping

ϕ ∶ ∏t∈T (ν̄
t∆M

t

) ↠ ∏γ∈ΓX
γ
ϵ , which is nonempty-valued, upper hemicontinu-

ous, and convex-valued.
Next, we will construct a team measure mapping over policies χγ . To do

that, first let ∆Γ ≡ {(tγ)γ∈Γ ∈ RΓ
+ ∶ ∑γ∈Γ t

γ = 1} and let τ ∶ ∏t∈T (ν̄
t∆M

t

) ↠

(maxt∈T ν̄t)∆Γ be such that τ(n) = (τγ (nγ))γ∈Γ = (maxm∈Mγ nγ
m)γ∈Γ, which

describes the measure of each team γ that can accommodate its population
distribution nγ = (nγ

m)m∈Mγ . Clearly, it is a continuous function.
Second, we need to connect an abstract policy x of team γ with actual

policies θγ (see Figure 4). Note that wγ maps xγ to payoff space one-to-one.
Let θ̃γ ∶ Xγ

ϵ × P ↠ Θγ be θ̃γ(xγ , p) ≡ θ̄WP (w
γ(xγ , p), p) for all γ ∈ Γteam, and

θ̃γ
t

(xγt

, p) ≡ θ̄γ
t

WP (1, p) for γ
t ∈ Γsngl. Mapping θ̃γ maps abstract policy xγ to a

subset of policies that supports payoff vector wγ(xγ , p). Since mapping θ̄WP is
upper hemicontinuous (Lemma 2), and wγ is a continuous function, θ̃γ is upper
hemicontinuous.

Now, we can construct team measure mapping over policies. Let Mγ be the
set of measurable functions on Θγ bounded above by maxt∈T ν̄t, and let χγ ∶

(maxt∈T ν̄t)∆Γ×Xγ
ϵ ×P↠Mγ be χγ(nγ , xγ , p) = {µγ ∈Mγ ∶ µγ (Θγ) = µγ (θ̃γ(xγ , p)) = τγ(nγ)}.

Let χ ∶ (maxt∈T ν̄t)∆Γ × ∏γ∈ΓX
γ
ϵ × P ↠ ∏γ∈ΓMγ be a Cartesian product

of χγs. Since θ̃γ is nonempty-valued, and upper hemicontinuous, χγ and χ
are nonempty-valued, convex-valued, and upper hemicontinuous, too (see Mas-
Colell 1984).

22Note that xγ
m = ϵ means that uγ

m(θ
γ , p) < uγt(m,γ)

(p) = 1 for θγ ∈ θ̃γ(xγ , p). That is, if the
unbalanced population in team type γ cannot be a part of a fixed point, since over populated
position’s type would receive a payoff less than individually rational one. This is related to
a price mapping in the Gale-Nikaido mapping (see Debreu, 1959; for a recent comprehensive
treatment of this approach, see Khan, McLean, and Uyanik, 2025).
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Figure 4

Lastly, the externality mapping φ ∶ ∏γ∈ΓMγ ×P→ P is the final block of our
fixed point mapping p = φ (τ, p). It determines the externality variables level
under (ν, p). This is a continuous function by assumption.

Our fixed point mapping Φ ∶ ∏t∈T (ν̄
t∆M

t

) × ∏γ∈ΓX
γ
ϵ × ∏γ∈ΓMγ × P ↠

∏t∈T (ν̄
t∆M

t

) × ∏γ∈ΓX
γ
ϵ × ∏γ∈ΓMγ × P is a Cartesian product of mappings

β, ϕ, χ, and φ. This mapping has a nonempty, compact, and convex set as its
domain and range, and the mapping is nonempty-valued, upper hemicontinuous,
and convex-valued. Thus, by Fan-Glicksburg’s fixed point theorem, there exists

a fixed point (n,x,µ, p) ∈ ∏t∈T (ν̄
t∆M

t

) ×∏γ∈ΓX
γ
ϵ ×∏γ∈ΓMγ × P.

The rest of the proof shows that the fixed point (n,x,µ, p) corresponds to an
equal-treatment free entry equilibrium under comprehensiveness. First notice
that for all γ ∈ Γ, and all m,m′ = 1, ...,Mγ , nγ

m = n
γ
m′ must hold. It is shown

by contradiction. Suppose that for some γ, nγ
m > nγ

m′ holds. Without loss
of generality, let position m be the highest population among all positions in
team type γ. Then, by construction of ϕγ , xγ

m = ϵ holds. This implies that

ut(m,γ) < 1 = uγt

despite that her outside option achieves a positive payoff. By
the construction of βt(m,γ), nγ

m = 0 must follow. This is a contradiction. Thus,
for all γ ∈ Γ, nγ

1 = ... = n
γ
Mγ holds. Recalling that the distribution of type t(m,γ)

players over team type γ’s policies Θγ is described by a measure νγm over Θγ , we
let all positions m ∈ Mγ have the same distribution over Θγ : νγ1 = ... = ν

γ
Mγ = µγ

for all γ ∈ Γ. This makes (ν,µ) a feasible assignment. By the construction of β,
all types of players are choosing the highest payoff positions at the fixed point,

so for all t ∈ T , βt
(m,γ) (x, p) > 0 implies wγ

m(x
γ , p) ≥ wγ′

m′(x
γ′ , p) for all (γ′,m′) ∈

Mt(γ,m) for allm = 1, ...,Mγ . For all t ∈ T , let u∗t ≡ w
γ
m(x

γ , p) for all (m,γ) ∈ Mt

with βt
(m,γ) (x, p) > 0. Since xγ is a weakly Pareto efficient for all γ, there is no

strictly improving coalitional deviation. By the construction of χγ mapping, we
have µγ (Θγ) = µγ (θ̃γ(xγ , p)) for all γ ∈ Γ. This implies that for all γ ∈ Γ with
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µγ(Θγ) > 0, and all θγ ∈ θ̃γ(xγ , p) ⊂ Θγ
WP (p), u

γ
m(θ

γ , p) ≥ wγ
m(x

γ , p) = u∗t(m,γ)

holds for all m = 1, ...,Mγ (see Figure 4). Thus, letting νγm(θ
γ) = µγ(θγ) for all

m ∈ Mγ and all γ ∈ Γ, (p, (u∗t )t∈T , (ν
γ
m)m∈Mγ ,γ∈Γ , (µ

γ)γ∈Γ) is an equal-treatment
free entry equilibrium under comprehensiveness.◻

This result immediately implies the following theorem.

Theorem 2. Suppose that for all γ ∈ Γ, and all positions m of team type γ,
type t = t(m,γ)’s indirect payoff function uγ

m(θ
γ , p) is continuous in (θγ , p),

externality function φ(p, µ) is continuous in (p,µ), and feasible policy corre-
spondence Zγ(p) is nonempty-valued and continuous in p. Then, there exists a
free entry equilibrium.

Proof. From the last part of the proof of Theorem 1, we know that for all γ ∈ Γ
with µγ(Θγ) > 0, and all θγ ∈ θ̃γ(xγ , p) ⊂ ΘWP (p), uγ

m(θ
γ , p) ≥ wγ

m(x
γ , p) =

u∗t(m,γ) holds for all m = 1, ...,Mγ . Thus, only zero measure of players are not
assigned to weakly Pareto efficient policies, and almost all players are distributed
over the weak Pareto policies according to µγ , achieving (u∗t )t∈T or higher pay-
offs in the associated feasible allocation. However, the above allocation is an
equal-treatment free entry equilibrium under comprehensiveness, and there is
no strictly improving diation from it. This implies that the associated feasible
allocation is immune to strictly improving deviation as well. We completed the
proof.◻

5 Concluding Remarks: Some Applications

The advantage of this approach is that we do not need to select a (Pareto)
optimal allocation for a club or a household. The second best set of allocations
may be highly nonconvex, but in payoff space, it could be much more well-
behaved. By inventing the way to keep track of feasible allocations that achieve
a payoff vector as an inverse mapping of payoff functions, we only need continuity
of payoff functions and the compactness of an implementable set in payoff space.
To conclude, we provided several applications of our model.

5.1 Labor Managed Firms: Revisited

Here, we show how our general framework can accommodate the leading ex-
ample presented in Section 2. The market price p is determined by an inverse
demand function p = P (Y ), where Y is aggregate output of the product. We as-
sume that P ≡[0, p̄], and P ∶ R+ → P is a continuous and nonincreasing function.
Since each team is atomless, market price P (Y ) is taken as given by each player
and team. teams can engage in production by hiring players who can provide
heterogeneous labor depending on their types (distinguished by their ability,
marginal cost of effort etc). Within each team players engage in effort contribu-
tion game in producing the product, and the revenue of producing the product
is fully distributed among the team players (labor managed firm). For example,
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we can consider a simple proportional revenue sharing rule as Θγ .23 Each team
type γ ∈ Γ chooses a proportional revenue sharing rule θγ = (θγ1 , ..., θ

γ
Mγ ) > 0

with ∑
Mγ

m=1 θ
γ
m = 1, thus θ

γ ∈ Θγ ≡∆Mγ

, where ∆S is an S-dimensional simplex.
Consider type t = t(m,γ) player hired in position m of team γ. Type t ∈ T
player has a quasi-linear payoff function, and solves the following optimization
problem

max
eγm

ut = θ
γ
mpfγ

(eγ1 , ...., e
γ
m, ..., eγMγ ) −C

t
(eγm),

where fγ(⋅) is team γ’s production function, and Ct(e) is type t player’s effort
cost function. Both θγm and p are taken as exogenous in the player’s opti-
mization problem. Equilibrium payoff of position m player (type t = t(m,γ))
and equilibrium output are described by uγ

m(θ
γ , p) and yγ(θγ , p), and the dis-

tribution of production teams over policies in team type γ Θγ is µγ . Then,
Y (p,µ) = ∑γ∈Γ

�
Θγ y

γ(θγ , p)dµγ , and by setting φ(p,µ) = P (Y (p,µ)), we can
embed this example in our abstract problem.

5.2 Endogenous Households and Markets

Gersbach, Haller, and Konishi (2015) analyzed a general equilibrium model with
large number of consumers/agents when households (composed of a husband and
a wife) are endogenously formed and the family members choose their consump-
tion vectors and actions jointly, which are subject to local externalities within
the family. Their concerns are the existence of equilibrium and its efficiency.
Our approach of working on payoff space instead of policy/allocation space can
generalize their results significantly. Here, we illustrate how we can embed their
model into our model. Following the literature, we assume that there are two
group of consumers, male and female, and a married household can be formed by
a pair of male and female consumers.24 Letm ∈ TM and w ∈ TW be a representa-
tive couple (types) of male and female consumers. There are L private goods and
some discrete action set A that are subject to externalities within the household,
and each couple (m,w) chooses their policy (xm, xw, a) = θ ∈ Θ ≡ RL

+ ×RL
+ ×A

collectively. A matching is described as a measure µ over TM × TW ×Θ with
measure consistency. Assuming that there is a commodity with strong mono-
tonicity for all consumers, any household exhaust their budget, and as a result,
the Walras Law is satisfied. Letting P ≡∆L × Z, where ∆L is a price simplex
and Z ⊂ RL is a set of excess demand, which is compatified with a standard
method. The only difference from our theorem is that we need the externality
mapping to be a correspondence instead of a continuous function: Deriving the
aggregated excess demand by integrating the consumption bundles with mea-
sure µ, we can construct a price-determining fixed point mapping φ, and prove
the existence of stable (divorce-free) household distribution in a market equi-
librium and its optimality as in Haller et al. (2015) through the Gale-Nikaido’s

23Ichiishi (1977) considered labor managed firms withendogeneous memberships in a strictly
finite model. He identified a set of sufficient conditions that guarantee a free entry equilibrium
without asymmetric information.

24We can drop this assumption at no cost as is seen from our analysis.
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lemma (see Debreu 1959).25 However, our method has a strong advantage over
their method. They work on a fixed point mapping of a policy (collective choice
of consumption vectors and (unpriced) actions), which requires the convexity of
their preferences—they assume quasiconcavity of payoff functions for a pair of
consumption vectors to find a Pareto efficient allocation by using the method in
Shafer and Sonnenschein (1975). In contrast, in this paper, we work on payoff
space instead of allocation space, and we can drop quasiconcavity of payoff func-
tion completely, and we can also allow for suboptimal allocations for a married
couple (due to lack of pre-marriage commitment power etc.). We can also apply
the same method for club and local public good economies as in Ellickson et al.
(1998), Allouch et al. (2009), and Konishi (2010, 2013).26

5.3 Large Group Contests with Random Matching

Konishi, Pan, and Simeonov (2025) consider a Tullock contest played in an K
team sport league, in which each team has M positions and a fixed sharing
rule is set by a social norm. It is still hard to show a general existence of
stable team structure due to integer problems. Here, we illustrate how our
approach provides a remedy by replicating the leagues. In their model, players
differ in their type t ∈ T with heterogeneous ability at > 0, and make effort
contributions e with a common linear cost function c(e) = e. A representative
team type γ ∈ Γ is an assignment function αγ ∶ {1, ...,M} → T} with a common
technology f . Konishi, Pan, and Simeonov (2025) consider K ×M players form
K teams, and compete for a single prize with a Tullock team contest: i.e.,
team k’s winning probability is πk(y1, ..., yK) =

yk

ΣK
k′=1

yk′
, through their team

output y′k ≥ 0 produced by an identical CES production function f(e1, ..., eM) =

(ΣM
m=1 (amem)

σ
)

1
σ , where am = at(γ,m) and em = et(γ,m) are the ability and effort

of a player who occupies position m. The expected payoff of a player of team k
(of some type γ with a prize-sharing rule θk = (θk1 , ..., θ

k
M) ∈∆

M = Θ) in position
m is ũk

m = θ
k
mπk(y1, ..., yM) − em. If a league is characterized by the profile of

team types and their policies (γk, θk)
k=1,...,K

, its equilibrium payoff profile for

all teams and all positions is written as (uk
m ((γ

h, θh)
h=1,...,K

))
k=1,...,K;m=1,...,M

.

Now we replicate this problem by offering a prize for each league and consider
a continuum of leagues of K teams. The distribution of teams is described by
measure µ on Γ×Θ. Assuming the law of large numbers in continuum of random
variables (Judd 1985), we consider a team with (γ, θ) play a league with K − 1
teams randomly drawn from µ. With this machinery, team type distribution

25We cannot directly apply our proof to this problem, since the price-determination mapping
φ in the Gale-Nikaido lemma needs to be a correspondence, while our externality mapping
φ is assumed to be single-valued. However, it is easy to show that market excess demand
and Walrasian auctioneer mappings are nonempty-valued, upper hemicontinuous, and convex-
valued under the standard conditions, so we can apply the same fixed point mapping by calling
a Cartesian product of the market excess demand and the Walrasian auctioneer mappings φ.

26Recently, Konishi (2025) applied the method proposed here to urban economics model to
generalize Konishi (2013).
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µ determines the likelihood of each league type realizations, determining each
type player’s expected payoff by belonging her team. Then, the expected payoff
of type t(m,γ) who occupies position m of team-type γ with policy θ when
team distribution is described by measure µ can be written as

Um ((γ, θ) ;µ) ≡

�
Θ

[

�
Θ

... [

�
Θ

um ((γ, θ) ; (γ
h, θh)

h=2,...,K
)dµ] ...dµ]dµ.

Using this, we can define comprehensive cover of feasible payoff vectors of team
type γ under µ by V̄ γ (µ). This way, we can embed this random matching prob-
lem into our framework, and we can prove the existence of free entry equilibrium.
Existing distribution of team types is certainly important in determining which
team choose which policies.27 Chade and Eeckhout (2020) considers a random
matching model without action choice, which can be considered as a special case
of the above mentioned application when policy choices and effort contribution
games are abstracted.

Appendix

Here we assume a CES technology f(e1, e2) = (a1e
σ
1 + a2e

σ
2 )

ρ
σ with σ ∈ (0,1), and

calculate Nash equilibrium of an effort contribution game with heterogeneous
shares in our labor managed firm example. Workers’ cost of making effort is
linear: ci(ei) = ei for i = 1,2. Without loss of generality, we assume ν̄1 = 1 and
ν̄2 = 2. Each team can choose its proportional sharing rule (θ1, θ2).

In a team with (θ1, θ2), worker i = 1,2 solves the following problem:

max
ei

θipf(ei, ej) − ei.

Let y = f(e1, e2) = (a1e
σ
1 + a2e

σ
2 )

ρ
σ . The first order conditions are for i = 1,2

∂f

∂ei
= θip

ρai
e1−σi

y
ρ−1
ρ − 1 = 0,

or
ei = (θiaipρ)

1
1−σ y

ρ−σ
ρ(1−σ) .

Substituting them back to y = (a1e
σ
1 + a2e

σ
2 )

ρ
σ , we obtain

y = (a
1

1−σ

1 θ
σ

1−σ

1 + a
1

1−σ

2 θ
σ

1−σ

2 )

ρ(1−σ)
σ(1−ρ)

p
ρ

1−ρ ρ
ρ

1−ρ .

Thus, we can write ei as a function of economic data.

ei = θ
1

1−σ

i a
1

1−σ

i (a
1

1−σ

1 θ
σ

1−σ

1 + a
1

1−σ

2 θ
σ

1−σ

2 )

ρ−σ
σ(1−ρ)

p
1

1−ρ ρ
1

1−ρ

27In Konishi et al., they consider an exogenous fixed sharing rule, corresponding to the case
of ∣Θ = 1∣ and µ being a vector of scalars. However, our approach extends to the case with a
general compact Θ in which each team can choose θ.
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Substituting them back to ui = θipy−ei, worker i’s intra-team equilibrium payoff
is written as

ui =

⎧⎪⎪
⎨
⎪⎪⎩

θi (a
1

1−σ

1 θ
σ

1−σ

1 + a
1

1−σ

2 θ
σ

1−σ

2 )

ρ(1−σ)
σ(1−ρ)

ρ
ρ

1−ρ − θ
1

1−σ

i a
1

1−σ

i (a
1

1−σ

1 θ
σ

1−σ

1 + a
1

1−σ

2 θ
σ

1−σ

2 )

ρ−σ
σ(1−ρ)

ρ
1

1−ρ

⎫⎪⎪
⎬
⎪⎪⎭

p
1

1−ρ .
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