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Abstract

This paper explores the uniformity of inference for parameters of interest in nonlin-

ear econometric models with endogeneity. Here the notion of uniformity arises because

the behavior of estimators of parameters is shown to vary with where they lie in the

parameter space. As a result, inference becomes nonstandard in a fashion that is loosely

analogous to inference complications found in the unit root and weak instruments lit-

erature, as well as the models recently studied in Andrews and Cheng (2012), Chen,

Ponomareva, and Tamer (2014), Han and McCloskey (2019). Our main illustrative ex-

ample is the standard sample selection model, where the parameter is the intercept term

as in Heckman (1990), Andrews and Schafgans (1998) and Lewbel (2007). We show

here there is a discontinuity in the limiting distribution for an estimator despite it being

uniformly (across degrees of selection) consistent. This discontinuity prevents standard

inference procedures from being uniformly valid, and motivates the development of new

methods, for which we establish asymptotic properties. Finite sample properties of the

procedure is explored through a simulation study and an empirical illustration using

the Mroz (1987) data set as in Newey, Powell, and Walker (1990).
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1 Introduction

Endogeneity and sample selectivity are frequently encountered in econometric models, and

failure to correct for them appropriately can result in incorrect inference. In linear mod-

els, with the availability of appropriate instruments, two-stage least squares (2SLS) yields

consistent estimates without the need for making parametric assumptions on the error dis-

turbances. This is not the case in non-linear models, as the consistency of 2SLS depends

critically upon the orthogonality conditions that arise in the linear-regression context.

One approach for handling endogeneity in many non-linear models has required parametric

specification of the error disturbances. A more recent literature in econometrics has devel-

oped methods that do not require parametric distributional assumptions, which is more in

line with the 2SLS approach in linear models. This semiparametric, or “distribution-free”

approach can be roughly divided into two groups , depending on the source of endogeneity

that arises in the model.

In one case the source of endogeneity is that the data available to the econometrician is

selected nonrandomly, resulting in what is now well known as sample selection bias (Gronau

(1973), Heckman (1974)). Distribution free methods were proposed in Powell (1986),Ahn

and Powell (1993), Lewbel (2007), Newey (2009), and recent work in D’Hautefoeuille, Mau-

rel, and Zhang (2018) and Honoré and Hu (2019). In the other case, the source of endo-

geneity is the explanatory variables themselves. Recent work such as Blundell and Powell

(2003), Vytlacil and Yildiz (2007), Khan and Nekipelov (2018) proposed semiparametric,

distribution free methods which are robust to misspecification of the distribution of the

unobserved components of the model.

In this paper we point out that the inference problem in these models with endogeneity has

not yet been adequately solved since they have yet to propose an inference method that

is uniformly valid in the parameters of the model. By this we mean that the large sample

properties of estimators for these models will vary depending on the values of the unknown

parameters of the model. Furthermore this often results in a limiting distribution theory

that will be discontinuous in these parameters. It is this discontinuity which motivates the

new inference procedures we propose.

The rest of the paper is organized as follows. The next section illustrates the main difficulty

with conducting inference by reconsidering the semiparametric1 sample selection model Ahn

and Powell (1993), Heckman (1990), Lewbel (2007), Andrews and Schafgans (1998)),Newey

1Nonparametric sample selection models were considered in Das, Newey, and Vella (2003).
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(2009). In Sections 2 and 3 we show that the large sample behavior of existing inference

methods vary discontinuously with the degree of selection on unobserved variables, with

one extreme case being when selection is on observed variables only. As we will show this

discontinuity results in impossibility results for valid uniform inference, and motivates our

new inference procedures. Sections 4 and 5 explores the finite sample properties of our new

inference methods in two ways. In Section 4 we consider a simulation study, and in Section

5, we apply the new inference method proposed in Section 2 to study the slope coefficients

in a female labor supply curve, using the data set introduced in Mroz (1987). Section

6 explores how our proposed inference models can be used to conduct valid inference for

parameters of interest in other nonlinear models with endogeneity, such as triangular and

non triangular systems of discrete variable equations often explored in labor economics and

empirical industrial organization.

Section 7 concludes by summarizing our results and suggesting areas for future research

that will aim to primarily address the unresolved issues in this paper. An Appendix collects

all the proofs of the main theorems in the paper.

2 Identification and Inference in the Sample Selection model

In this section we illustrate the complications that can arise when conducting inference in

the sample selection model, which has been of widespread interest in both theoretical and

applied econometrics. This is because estimation of economic models is often confronted

with the problem of sample selectivity, which is well known to lead to specification bias

if not properly accounted for. Sample selectivity arises from nonrandomly drawn samples

which can be due to either self-selection by the economic agents under investigation, or

by the selection rules established by the econometrician. In labor economics, the most

studied example of sample selectivity is the estimation of the labor supply curve, where

hours worked are only observed for agents who decide to participate in the labor force.

Examples include the seminal works of Gronau (1973) and Heckman (1974). It is well

known that the failure to account for the presence of sample selection in the data may lead

to inconsistent estimation of the parameters aimed at capturing the behavioral relation

between the variables of interest.

Econometricians typically account for the presence of sample selectivity by estimating a

bivariate equation model known as the sample selection model (or using the terminology

of Amemiya (1985), the Type 2 Tobit model). The first equation, typically referred to

as the “selection” equation, relates the binary selection rule to a set of regressors. The
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second equation, referred to as the “outcome” equation, relates a continuous dependent

variable, which is only observed when the selection variable is 1, to a set of possibly different

regressors.

We express mathematically with the following model:

D = 1{Z − V ≥ 0}

Y = DY ∗ = D · (θ0 + U)
(2.1)

Where θ0 ∈ R is the unknown parameter of interest, Z is the observed instrumental variable,

and U, V are unobserved disturbances, which are independent of the instrument, but not

necessarily independent of each other. The observed dependent variable D in the selection

equation is binary, with 1{·} denoting the usual indicator function, and the dependent

variable of the outcome equation, Y ∗, is only observed when D = 1.

The above model is in one sense a condensed version what is often estimated in practice.

The standard setup usually includes additional covariates, denoted by the observed random

vector X in the second equation, where Y ∗ would be expressed as

Y ∗ = θ0 +X ′β0 + U

in which case Z would also be a vector whose dimension would usually exceed that of the

dimension of X, and β0 would also be a parameter to conduct inference on- see, e.g. Ahn

and Powell (1993)

Our focus is on the condensed model and θ0 only, for the following reasons. First, θ0 is the

parameter of interest in much of the treatment effects literature as it relates to the average

treatment effect- see, e.g. Heckman (1990) and Andrews and Schafgans (1998). As discussed

there the economic interpretation of an sample selection model makes inference on the

intercept particularly important. It is required for the evaluation of the wage gap between

unionized and nonunionized workers or between two different socioeconomic groups,- see,

e.g. Oaxaca (1973), Smith and Welch (1986), Baker, Benjamin, Cegep, and Grant (1995).

In the program evaluation literature the intercept permits evaluation of the net benefit of

a social program by permitting comparisons of the actual outcome of participants with the

expected outcome had they not chosen to participate..

Second, θ0 is the parameter for which the difficulty in conducting inference can vary with

the degree of selection, measured by the correlation between U and V . This is generally

not the case for inference on β0 for which inference on can be handled by existing methods.
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What complicates inference on for θ0 is that how well one can estimate θ0 depends on

the type of selection in the model, something which is unknown to the econometrician.

For example, if the selection in the model is on observables only, which corresponds to

U, V being uncorrelated with each other, than θ0 can be consistently estimated at the

standard parametric rate by, for example OLS or WLS only using the observations where

D = 1. However, both OLS and WLS will be inconsistent if there is any amount of

selection on unobservables. An alternative estimator would be to take into account selection

on unobservables. One such estimator is proposed in Heckman (1990) and Andrews and

Schafgans (1998). We propose a different one in this paper that will be the basis of our

inference procedure.

Neither the Andrews and Schafgans (1998) (AS) estimator nor the new estimator (KN) we

propose will have standard asymptotic properties (i.e parametric rates of convergence, limit-

ing Gaussian distributions). These nonstandard properties will continue to hold even in the

case when selection on observables only. The comparison of both the AS and KN estima-

tors to the standard OLS and WLS estimators represents the classical robustness-efficiency

tradeoff; OLS,WLS is not robust to selection on unobservables, but is more efficient than

AS or KN if selection is on observables only.

To introduce an inference procedure that allows for both types of selection we consider the

behavior of the KN estimator under drifting parameter sequences. For the problem at hand,

one way to interpret these sequences would the correlation between U and V converging to

0, so that in the limit, the selection is on observables only.

To facilitate this discussion in the remainder of this section, we will distinguish between

realizations of the random variables from a random sample and the random variables them-

selves. Our notation will be conventional in the sense that lower case letters with a subscript

i will denote realizations from a random sample of n observations, and capitalized letters will

denote the random variables themselves. So for example, in the above base model described,

di, zi, vi, yi, ui will denote realizations of draws from the random variables D,Z, V, Y, U .

One of the main complications for estimation and inference procedure in this sample selec-

tion model is the unknown joint distribution of U and V . In this case, one may be inclined

to pre-test for the correlation between the error terms in the two equations, and if it be-

comes clear that the error terms are uncorrelated, one may use the mean of the outcome

whenever the dummy D is not equal to zero, as an estimate for θ0. By the standard CLT,

this mean will converge to expectation at a parametric rate. However, if one establishes
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that U and V are correlated, than the full distribution of U and V needs to be explored

and thus the estimator for θ0 may need to employ an estimated unknown function leading

to a slow rate of its convergence.

As we will show, a cause of behavior of the estimator is the tail structure of the distribution

of U and V . It turns out that we can find two joint distributions of U and V which will

be arbitrarily close to each other, yet the corresponding estimator for the parameter of

interest θ0 may have drastically different performance both in the rate of convergence and

in the the asymptotic distribution. In practical terms this implies that a small amount

of contamination in the data leading to a small correlation between U and V may have a

substantial impact on the properties of the estimator for the parameter of interest.

We focus our discussion by analyzing the estimators arising in the two cases: when U and

V are correlated and when they are not and then we design the procedure that bridges the

gap between the two distributions.

Before starting the formal analysis we present the general assumptions that we impose on

the structure of the distribution of error terms and the covariates.

ASSUMPTION 1 (i) Z has a full support on R with the density fZ(·) that is absolutely

continuous and such that 1/fZ(·) is absolutely integrable on any bounded subset of R.

(ii) U and V have absolutely continuous strictly positive joint density supported on R×R
such that (U, V ) ⊥ Z and E

[
|U |2 |V = v

]
<∞ uniformly over v ∈ R.

(iii) The conditional density fU |V (· | v) is well defined for each v ∈ R, it is bounded for

each v.

First, we establish the general identification result for the parameter of interest. We note

that our only normalization is E[U ] = 0. In this case the expectation of the “combined”

error term U,D in the main equation of the selection model is not equal to zero. Although

no information is available regarding the structure of correlation between U and V , the

marginal distribution of V may be recovered from the selection equation. But this is not

informative for the conditional distribution of U given V .

In this case the identification argument works only in the limit. In fact, we note that

E [Y |D = 1, Z = z] = θ0 + E [U |V ≤ z]
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Alternatively, we can write

θ0 =
E [Y |Z = z]

P (z)
− E [U |V ≤ z] ,

where P (z) = E[D|Z = z]. Then given the assumption that support of Z is large, we can

see that lim
z→+∞

P (z) = 1 and lim
z→∞

E [U |V ≤ z] = E[U ] = 0, therefore

θ = lim
z→+∞

E [Y | Z = z] .

We note that this expresses the parameter of interest in terms of the observable conditional

expectation E[Y |Z]. Thus, this demonstrates the identification of this parameter under

Assumption 1 which does not require the knowledge of any features of the joint distribution

of (U, V ). However, without further assumptions the identification is based on the limit-

ing values of the ”instrument” Z. This is why parameters identified in this manner are

frequently referred to as identified at infinity.

Heckman (1990) and Andrews and Schafgans (1998) develop semiparametric inference pro-

cedures for the intercept parameter in the selection model.

Here we will consider inference based on a closed form estimator that has a similar structure

to the estimator considered by Lewbel (1998) who studied the estimation of the intercept

of the binary choice model under mean restriction imposed on the error term. We work

with this estimator because its closed form facilitates exploring asymptotic properties under

varying conditions.

As will be shown, while this estimator is consistent over large classes of distributions of error

terms, it will have a rate of convergence that discontinuously changes with tail behavior

assumptions on the unobservables and the instrument. This will complicate inference in

several ways. For example, as we will show, it will make the construction of pivotal statistics

impossible. Furthermore, it will invalidate other approaches of constructing confidence sets

such as the bootstrap.

As an alternative, we propose the idea of locally uniform inference that will be based

on drifting parameter asymptotics. We find that with an appropriately chosen drifting

sequence, the resulting estimator will have an asymptotic distribution which enables valid

inference methods.
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2.1 Conditionally exogenous selection

We begin our analysis with a model based on “selection on observables”. In this model

the mean of the error in the main equation is zero conditional on the error term in the

selection equation: E [U |V ] = 0. With the assumed independence of the “instrument” Z

from the error terms, this also means that the mean of the error in the main equation is

zero uniformly over the values of Z. We note that in this case we can directly use the

system of equations of interest to show identification. In particular, we note that the mean

independence condition implies that E [U |V ≤ z] = 0, if the corresponding conditional

density is well-defined. Then we also note that

E [U D |Z = z] = E [U |V ≤ z] .

Then we can write

E [Y |D = 1, Z = z] = θ0 + E [U |D = 1, Z = z] = θ.

We note that conditioning on Z in this case is informative because even though the first

moment of U conditional on V does not vary with V , the second moment may. As a result,

conditioning on Z may be used, for instance, to account for heteroskedasticity. We then

can re-cast the identifying conditional moment for θ0 as

θ0 = E

[
Y

P (Z)

∣∣∣∣Z = z

]
. (2.2)

where P (Z) ≡ E[D|Z] denotes the “propensity score”. The structure of the estimator as

a conditional moment of variable Y/P (Z) allows us to accumulate the information over Z

and the resulting estimator will not be affected by the observations where the propensity

score takes values close to zero or one.

In the case where the error term in the main equation is mean independent from the error

term in the selection equation, the estimator for the parameter(s) of the first equation

converges at the parametric rate.

Although the estimator (2.2) provides a closed-form expression for the parameter of interest,

this estimator is not robust to deviations from the “selection on observables” assumption.

In case where the errors are not mean independent, the estimator will be biased and this

bias cannot be estimated at a sufficiently fast rate.

Another purpose of the alternative representation below is to link the case where the error

term in the main equation is mean independent from the error term in the second equation
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to the case where the two error terms are correlated. In particular, we first note that

E [Y |Z = z] = θ0 P (z)

can be rewritten as

θ0 fV (z) =
∂E [Y |Z = z]

∂z
,

where the derivatives are well-defined under Assumption 1. Therefore

θ0 =
∂E[Y |Z=z]

∂z

fV (z)
.

2.2 A uniformly consistent estimator for the intercept in the sample selection

model

Now suppose that the only assumption that is imposed on the error terms is that E[U ] = 0.

As we previously established, this assumption is sufficient to identify the intercept in the

main equation under the full support assumption. The intercept can be expressed as

θ0 = lim
z→+∞

E [Y | Z = z] .

We note that by the dominated convergence theorem lim
z→−∞

E [Y | Z = z] = 0. Since work-

ing with pointwise limits of functions is often not convenient, we propose the following

transformation that allows us to express the parameter of interest directly from the primi-

tives of the model:

θ0 = lim
z→∞

∫ z

−z

∂E [Y |Z = z]

∂z
dz.

Taking the limit, we find that the parameter of interest can be represented as an improper

integral

θ0 =

∫ +∞

−∞

∂E [Y |Z = z]

∂z
dz

We can re-arrange this equation using Fubbini’s theorem, and make the estimator take a

form similar to that where the error term in the main equation is mean independent from

the error term in the selection equation. Thus, we can obtain that under Assumption 1

θ0 =

∫ +∞

−∞

∂E[Y |Z = z]

∂z

1

fZ(z)
fZ(z) dz = E

[
∂E[Y |Z]

∂z

fZ(Z)

]
.
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We note that this identification argument leads to a similar expression to that in Lewbel

(1997), Lewbel (2007), Lewbel (1998).

Therefore, we can introduce the random variable W = fZ(Z)−1 ∂E[Y |Z]
∂z and the estimator

is constructed as a sample average of the draws of this random variable2:

θ̂ =
1

n

n∑
i=1

wi. (2.3)

where wi denotes realizations of W . This case clearly contrasts with the case where the

error term in the main equation is mean independent from the error term in the selection

equation and the estimator was written in a weighted form. We note that in both cases

the variables forming the sum have a finite first moment. In particular, we note that

E [W ] = lim
z→∞

E [Y |Z = z] < ∞. However, the second moment of W itself may not exist.

The convergence properties of the corresponding improper integral are determined by the

tail behavior of the random variable
∂E[Y |Z]

∂z
fZ(Z) .

We note that under the i.i.d. assumption, we can apply Kolmogorov’s strong law of large

numbers and establish that

θ̂ =
1

n

n∑
i=1

wi
a.s.−→ 0,

where here we set the true parameter value of θ0 to be 0.

Thus, the estimator θ̂ possesses certain “stability” properties. As our results so far do not

give any information regarding the characterization of the distribution of the constructed

estimator, we may want to use some common method, such as the bootstrap to characterize

its asymptotic distribution. However, as the results in the next section demonstrate, the

traditional non-adaptive bootstrap fails in this case.

2.3 Properties of the weighted estimator

Consider a bootstrap procedure which takes the i.i.d. sample of variables Wi =
∂E[Yi |Zi]

∂z
fZ(Zi)

.

Then we take an array {
(
I

(n)
1 , . . . , I

(n)
n

)
, n ≥ 1} that is independent from Wn and such

that for each n the element I
(n)
i is uniformly distributed on {1, . . . , n}. Then the bootstrap

sample of size n is generated as W ∗i = W
I

(n)
i

.

2Note that this estimator is generally infeasible as it is often the case that the density function fZ(Z) is

unknown and has to be estimated. We proceed for now assuming the density function is known, but discuss

later in this paper further complications that can arise when it has to be estimated.
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THEOREM 1 Suppose that identification Assumption 1 holds and one uses the bootstrap

sample W ∗i to characterize the distribution of estimator (2.3). The bootstrap distribution

fails to converge to true limiting distribution of the partial sum.

The proof of the theorem is in Appendix A. This theorem is a consequence of the failure of

bootstrap noted in Athreya (1987). In particular, distributions that induce finite derivative

of the regression function E[Y |Z = z] with unbounded support that lead to the non-

existence of the integral
∫

(1/fZ(z)) dz would exhibit this behavior.

It turns out that the failure of the bootstrap for the inverse density weighted estimator is

not a particular property to that estimator. Actually, unless we impose additional assump-

tions, any uniformly consistent estimator for the intercept parameter will necessarily exhibit

non-uniform behavior in terms of its convergence rate and the structure of its asymptotic

distribution. We provide a general theory in Appendix A.

Later in this subsection we will be able to characterize the actual limit of the bootstrap

distribution under additional structural assumptions regularizing the tail behavior of the

instrument.

Given the failure of the bootstrap in this setting 3 one may consider other inference pro-

cedures employed in the literature. One such example is based on using pivotal inference.

Of interest frequently is the behavior of the t-statistic corresponding to parameter θ̂. In

fact, this approach was proposed in Andrews and Schafagans(1998) for the selection model

and Khan and Tamer (2010) as a method for analysis of parameters ”identified at infinity”.

See Hill and Chaudhuri (2012) for another example of this approach, as well as Ma and

Wang (forthcoming), Heiler and Kazak (2019) for very recent examples. In all of these

papers the inference approach can be considered as “robust” in the sense that it permits

valid inference across a class of bivariate distributions. However, validity for some of these

examples is based on certain tail conditions which ensured a Lindeberg type condition was

satisfied.

Our next result shows that without such tail conditions, the estimator (2.3), which is con-

3Inconsistency of the bootstrap in other settings when observations are heavy tailed is shown in Athreya

(1987), Politis, Romano, and Wolf (1999) and Romano and Wolf (1999). When second moments of the

observations exist, the bootstrap will be consistent. Similar results hold for the t-statistic. Interestingly,

even if consistent, bootstrap draws of the t-statistic will not result in any sort of “refinement”. For the

bootstrap resulting in refinement, existence of third moment of Wi is both necessary and sufficient- see

Bloznelis and Putter (2003). However, recent work in Müller (2017) shows an alternative method to achieve

refinement without third moments existing, as long as the second moment does.
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sistent uniformly over the distributions satisfying Assumption 1, is not compatible with

pivotal inference.

THEOREM 2 Suppose that Assumption 1 holds and E[U ] = 0. Then the empirical dis-

tribution of

T̂θ =

1
n

n∑
i=1

wi√
1
n

n∑
i=1

w2
i

is non-pivotal. In other words, for any δ > 0 there exist two distributions of (U, V, Z)

denoted F 1
U,V,Z and F 2

U,V,Z satisfying Assumption 1 such that

Pr
(
T̂θ ≤ t

) FkU,V,Z−→ Fk(t), k = 1, 2

and

sup
t∈R
|F1(t)− F2(t)| > δ.

In light of these negative results for both the bootstrap and the t−statistic, the question

remains as to what are the origins of this behavior of the estimator and whether there are

ways of characterizing its actual asymptotic behavior. As it turns out, a main reason for

this behavior is the non-existence of the second moments. When the second moment of

the random variable does not exist, the
√
n-normalized centered sample average will not

converge in distribution.

A natural direction to proceed in this case is to consider trimming W to obtain random

variables that have a finite second moment for each n. Such a solution has been suggested in

Andrews and Schafgans (2001) where it was assumed that the tail behavior of the distribu-

tion of W is given. However, in many practical settings, the tail behavior of the unobserved

component of the model is unknown. Then the tail index of this unknown distribution

becomes an ancillary parameter that itself has to be estimated. Original estimators of the

tail index can be found in Hill (1975) and Pickands (1975), and for a more recent develop-

ment see Müller and Wang (2017). The convergence rate of the estimator of this parameter

may be extremely slow and thus its behavior will dominate the behavior of the remaining

components of the trimmed estimator, see e.g. McCulloch (1986), McCulloch (1997).
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This indicates that the estimators based on the oracle properties of the distribution, such

as the estimator based on trimming are infeasible or they may invoke a slow adaptive rate

that incorporates the fact that the tail behavior should itself be estimated.

The absence of convergence in distribution of
√
n-normalized centered sample averages leads

to the general absence of convergence in distribution for pivotized statistics. If F is the class

of distributions satisfying Assumption 1 then in general the distribution of the t-statistic

does not converge uniformly to normal distribution. In other words even if we found a

candiate F ′ ∈ F such that Pr
(
T̂θ ≤ t

)
→ Φ(t) for each t ∈ R then for any δ > 0:

lim
n→∞

sup
t∈R

sup
‖F−F ′‖∞<δ, F∈F

∣∣∣Pr
(
T̂θ ≤ t

)
− Φ(t)

∣∣∣ 6→ 0,

where Φ(·) is the standard normal cdf.

Theorem 2 has important implications for conducting inference in this model. In previous

work, Andrews and Schafgans (1998) showed that a studentized estimator in the selection

model could indeed be used to conduct valid inference for a wide class of distributions

of observables and unobservables, satisfying certain relative tail restrictions. Our above

theorem compliments that result by demonstrating the necessity of the tail conditions for

this to be a valid inference method.

As was the case in Theorem 1, it is also the case here that the conclusion in Theorem 2

for the inverse density weighted estimator is not just property to that estimator. Without

additional assumptions, any uniformly consistent estimator for the intercept parameter will

necessarily exhibit non-uniform behavior in terms of its convergence rate and the structure

of its asymptotic distribution. We provide a general theory in Appendix A.

3 Locally uniform inference for the sample selection model

We noted that in case where the model is compatible with selection on observables (the error

terms are mean-independent in the main and selection equations) θ̂0 is a consistent estimator

for the parameter of interest in the main equation which converges at the parametric rate

to the true parameter regardless of the tail behavior of the covariate density fZ(·). On the

other hand, for any distribution of error terms that fails to assure that the error term in

the main equation is mean independent of the error term in the selection equation, we need

to use estimator θ̂ that uses a simple unweighted average of wi. We recall that θ̂0 converges

at a parametric
√
n rate while θ̂ converges at a slow rate �

√
n.
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In this context it may seem attractive to use some form of pre-testing to establish whether

the given model exhibits selection on unobservables. This naturally leads us to the estimator

that has the structure of the Hodges estimator:

θ̂H =

{
θ̂, if |θ̂ − θ̂0| > C/

√
n,

θ̂0, if |θ̂ − θ̂0| ≤ C/
√
n.

This estimator however, exhibits a non-uniform behavior. In fact, for any distribution of

error terms that is compatible with selection on observables we can find another distribution

that will be arbitrarily close to the original distribution in the L2 norm defined by the

probability measure associated with random variable Z, but it will not be compatible with

mean independence. The rate of convergence of the consistent estimator for θ under that

distribution may be as slow as log nκ for some κ > 0. Moreover, the structure of the

asymptotic distribution of the consistent estimator for these two close distributions of error

terms is dramatically different: while it is normal in the model with selection on observables,

it is may be represented by the distribution of a stable Lévy process in the model with

selection on unobservables.

It is important to note that the estimator that is based on unweighted averaging over the

realizations of W is consistent in both the case of selection on observables and the selection

on unobservables. The estimator that is based on the weighted average is inconsistent where

the error terms in two equations are correlated. As we noticed it before, in the case where

the density of the instrument Z has thin tails, the rate of convergence and the asymptotic

distribution of the estimator θ̂ = 1
n

∑n
i=1wi relies on the tail behavior of this density. An

estimation procedure that is adaptive both to the convergence rate and the shape of the

asymptotic distribution is hard to construct, especially of the distribution of Z has a small

tail probability. On the other hand, the procedure that is based on the weighted averages of

W (leading to estimator θ̂0) in general requires bias-correction. Bias correction in this case

will again require the analysis of the tail behavior of the inverse density of the instrument

and will lead to the same difficulties as adaptive inference for the unweighted estimator θ̂.

An approach to bridge the gap between these two asymptotics is to consider a family of

distributions of instruments Z that are compatible with finite (constant) second moments

of random variables W . Provided that we assume that the data are i.i.d. we can apply the

standard Central Limit Theorem to establish asymptotic normality. Then we can consider

a distribution of instruments “local to” the distribution that has finite second moments.

Formally, this means that we find a heavy tail distribution that is contiguous to the distribu-

tion that delivers the finite second moments. Specifically, what we have in mind is that the
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Hellinger and L2 distance between these two distributions converges to zero as the sample

size increases. This approach may be attractive for two reasons. First, we approximate the

distribution of W in the area of the support of Z that has the highest probability mass with

the distribution that has finite second moments. Thus, it delivers the parametric conver-

gence rate for the unweighted sample mean characterizing θ̂. Second, given that we control

the choice of contiguous heavy-tail distributions we can choose the family of continguous

distributions to be sufficiently simple and thus estimation of the asymptotic distribution of

θ̂ will not require estimation of the tail behavior of W .

Provided that our estimator is fully characterized by the joint distribution of (Y, Z) which

then determines the random variable W =
∂E[Y |Z]

∂z
fZ(Z) Y , we can then concentrate on analyzing

this distribution.

To do so, we first introduce the class of distributions of (Y, Z) that are compatible with

asymptotic normality of estimator θ̂. This is class of distributions which must contain the

distribution of (Y, Z) when a particular parameter that is “identified at infinity” is claimed

to converge at a parametric rate to an asymptotic normal distribution.

DEFINITION 1 Suppose that the joint distribution (Y, Z), denoted FY Z(·, ·) is defined

by model (2.1). where the random elements satisfy Assumption 1. Define the class of

distributions

N =

{
FY Z(·, ·) : E

[(
∂E [Y |Z]

∂z

/
fZ(Z)

)2
]
<∞

}
.

Also define the class

N2 =

FY Z(·, ·) : argsup

β ∈ (0,+∞), E

(Y ∂E[Y |Z]
∂z

fZ(Z)

)β <∞
 = 2

 .

The defined class of distributions N is fundamental because it delivers the validity of the

Central Limit Theorem. The classN2 is on the boundary ofN in the sense that distributions

in N can be compatible with the second and higher finite moments of W while for the

distributions in N2, the second moment is the highest moment that exists for W .

LEMMA 1 Suppose that Assumption 1 is satisfied and Pr
(∣∣∣∂E[Y |Z]

∂z

/
fZ(Z)

∣∣∣ > w
)

is reg-

ularly varying at infinity with tail index −(1 + γ). Then, whenever γ ≥ 1, the distribution

FY Z(·, ·) ∈ N . Moreover, if γ = 1 then FY Z(·, ·) ∈ N2.
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Now suppose that FY Z(·, ·) ∈ N2. We consider the distribution of W , denoted FW (·) implied

by such a distribution FY Z(·, ·). By definition of class N2, we note that
∫
w2fW (w) dw <∞

while the integral
∫
wβfW (w) dw diverges for any β > 2. One practical example where the

distribution of W belongs to N2 is the case where E [U |V ] = 0.

LEMMA 2 Suppose that Assumption 1 is satisfied, Z has finite second moments and

E[U |V ] = 0 then Pr
(∣∣∣∂E[Y |Z]

∂z

/
fZ(Z)

∣∣∣ > w
)

is regularly varying at infinity with tail index

−2. In other words, the case where the errors are uncorrelated generates the distribution of

W for which FY Z(·, ·) ∈ N2.

The idea behind the construction of a heavy tailed distribution local to each element of N2

will be the following. Note that
∫

(·) |w|
1+csign(w)fW (w) dw is a measure defined on Borel

subsets of the real line for each c ∈ [0, 1).4 Our further arguments will be based on the

following considerations. As a “first-order approximation” we assume that distribution of W

has a finite second moment. Under this approximation we can characterize the part of the

asymptotic distribution around E[W ]. Then we consider the “second-order approximation”

which is taken to be an additional component that vanishes pointwise as the sample size

increases, much of which characterizes the extreme tail behavior of the distribution of W .

Then for each FY Z ∈ N2 the corresponding density fW (·) will be used to construct the “first

order” approximation to the asymptotic distribution. After an appropriate normalization,

| · |cfw(| · |1+c) is a valid density, but given that FY Z ∈ N2, this density will have heavy tails

and we will use the corresponding distribution to approximate the tail behavior.

The distribution FW (·) has tail index 2, while the distribution with density Fw(sign(·)| ·
|1/(1+c)) has tail index 2/(1 + c). Then if c = 0, then the latter distribution has exactly

two finite first moments while if c = 1 this distribution has only finite first moment. Now

we characterize the local asymptotics for the partial sum characterizing the estimator of

interest θ̂ = 1
n

n∑
i=1

wi. Let

SW (w) =
1

2
FW

(
sign(w)|w|1/(1+c)

)
+

1

2

(
1− FW

(
sign(−w)|w|1/(1+c)

))
and sW (·) be the corresponding density. For ρn = nc/(1+c) consider the local distribution

4We note that this constructed measure may exhibit non-regular behavior at the point W = 0 where

function |W |1+c is not differentiable. We alleviate this problem by employing a technique referred to as the

one-point uncompactification, which is based on re-defining the topology on R that avoids intersections of

the elements of this topology with the origin.
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for W using the density fW (·) with the finite second moment up to normalization as:

f cW (w) = fW (w) +
hc
ρn

(sW (w)− fW (w)) , (3.1)

where 0 < hc ≤ 1 and h0 = 0 and is continuous at c = 0. Note that this requirement is

imposed on hc to ensure that f cW (·) is a valid density and that it converges uniformly in w

and n to fW (·) when c is in the neighborhood of zero.

THEOREM 3 If the random variable W is distributed according to (3.1) then we can

establish that the limiting distributions of partial sums has the following limit:

1√
n

n∑
i=1

wi
d−→ σB(1) + hcL2/(1+c)(1),

where B(·) is the standard Brownian motion and L2/(1+c)(·) is the 2/(1 + c)-stable Lévy

process with c ∈ [0, 1]. In other words, the asymptotic distribution is a mixture of the

normal distribution and the stable distribution.

Thus, the advantage of this constructed local asymptotics is that, for one, the convergence

to its asymptotic distribution will occur at parametric rate. As a result, there is no need

to design an estimation procedure that will adapt both to the convergence rate and to the

asymptotic distribution (as is necessary in case of standard heavy tail asymptotics). Second,

our structure has a clear interpretation where the normal component characterizes the

asymptotic distribution close to the expected value of W while the Lévy process component

is responsible for the tail behavior of that asymptotic distribution.

The tail behavior of the asymptotic distribution as c varies from 0 to 1 changes from the

case where this distribution has a finite second moment and thus asymptotically normal, to

the case where this distribution only has a finite first moment and no higher moments. The

object of interest will be the quality of the approximation of the asymptotic distribution

uniformly over c ∈ [0, 1). The following result establishes the uniform normality of the

asymptotic distribution for the t-statistic constructed for θ̂.

THEOREM 4 Suppose that Assumption 1 holds and E [W ] = 0. Let F cT (w) be the distri-

bution of random variable constructed as

T c =
σB(1) + hcL2/(1+c)(1)√
σ2 + h2

cL
+
1/(1+c)(1)

,
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where L+
1/(1+c)(·) is the 1/(1 + c)-stable Lévy process defined on R+ \ {0}. Then the distri-

bution of random variable T c uniformly approximates the distribution of the t-statistic

T̂ c =
1
n

∑n
i=1wi√

1
n

∑n
i=1w

2
i

,

such that for some δ > 0

lim
n→∞

sup
c∈[0,1−δ]

sup
t∈R

∣∣F
T̂ c

(t)− Pr (T c ≤ t)
∣∣ = 0.

It is useful to point out the similarities and diffferences between Theorem 3 and 4 and

existing results in the econometrics literature. On the one hand we note similarities between

our results and on the inference in the autoregressive model with a near unit root and the

models with weak instruments. The similarity of these models to ours is in the discontinuity

of the distribution of the estimator for the parameter of interest with respect to the data

generating process. In the near unit root case, the presence of the unit root discontinuously

changes the asymptotic distribution from the normal to the non-standard Dickey-Fuller

distribution. In the weak instrument case, the distribution of parameter changes from

normal to Cauchy in case of the full irrelevance of an instrument.

But our model and results differ in important ways. The distribution of the estimated

parameter (and its convergence rate) changes in response to any change in the parameters

of the data-generating process. Therefore, it will be impossible to find a unique local

parametrization of the model that makes its asymptotic distribution change continuously

with respect to the model parameters. Consequently, in the choice of local parameterization

we need to define, first, the “focal” data generating process. Second, given that focal data

generating process we define the parametrization for local data generating processes (in

the small neighborhood of the focal data generating process) that converges to that data

generating process.

3.1 Approaches to inference

As we mentioned previously, one of the difficult components of inference for the parameter

of interest is in the construction of its distribution theory that requires the estimation of the

tail index of its domain of attraction. This index determines both the rate of convergence

and the shape of the confidence set for the parameter of interest. Politis, Romano, and Wolf

(1999) provide a subsampling approach that allows one to construct a valid confidence set

for studentized parameter of interest.
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Consider subsampling with subsample block size b and let θ̂n,b,i be the parameter estimate

in the i-th subsample and σ̂n,b,i be the standard deviation computed in that subsample.

THEOREM 5 (Politis, Romano, and Wolf (1999)) Suppose that the tail index 1 + γ

is fixed. The subsampling approximation L∗n,b = 1
Nn

∑Nn
i=1 1

{√
b
(
θ̂n,b,i − θ̂

)
/σ̂n,b,i ≤ x

}
converges uniformly to the distribution of variable U/V if b→∞ and b/n→ 0 as n→∞,

where U is the domain of stable attraction of partial sums of W and V is the domain of

stable attraction of partial sums of W 2.

This is a very useful result allowing to construct approximation for the asymptotic distri-

bution of a pivotized variable without requiring the estimation of the tail index. We note

however that the quality of subsampling approximation will deteriorate when the tail index

1 + γ approaches 1. The reason is that the standard deviation will be converging to the

stable law with tail index (1 + γ)/2 (meaning that the corresponding distribution does not

have a mean) and thus the constructed statistic will be highly variable across the subsam-

ples. This may require a more conservative inference method. The method that we propose

below allows one to construct such conservative bounds under local asymptotics.

THEOREM 6 Consider local asymptotics with a sequence of distributions (3.1). The

subsampling approximation L∗n,b = 1
Nn

∑Nn
i=1 1

{√
b
(
θ̂n,b,i − θ̂

)
/σ ≤ x

}
converges uniformly

to standard normal distribution if b→∞ and n/log b→∞ as n→∞.

Thus, under the local asymptotics, the subsampling distribution converges to a pivotal

normal distribution. The reason for that is that the component of the limiting distribution

which is responsible for the “outliers” is vanishing faster than the subsample size. The

distribution then converges to the non-vanishing normal limit. The subsampling is used

to estimate the correct variance σ2 of the normal component of the limiting distribution

mixture.

The structure of the local distribution gives an idea for non-conservative and conservative

inference based on the extracted normal distribution quantiles. The non-conservative infer-

ence will correspond to using the extracted normal quantiles for inference. The conservative

inference will suggest using the “worst-case scenario” distribution for the outliers meaning

that we need to take hc = 1 and Lc(·) to be the standard stable Levy process with c = 1.

The resulting conservative confidence set will be the sum of the normal confidence set and

the confidence set constructed from adding a standard Levy process scaled by σ.
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4 Simulation Results

In this section we finite sample properties of the estimation and inference procedures we

propose. To do so we simulate data from the sample selection models, and we report sum-

mary statistics intended to characterize the finite sample performance of both the existing

and new estimators whose asymptotic properties we established.

Simulation results are for sample sizes of 100, 200, 400 and 800 observations where we

report mean bias,median bias, and RMSE and median absolute deviation (MAD) from

3000 replications. Results for the proposed inverse weight weighted (IVW) estimator of the

intercept in a sample selection model are reported in tables 1-4 5.

For our design in the sample selection model we assumed the bivariate distribution was

standard bivariate normal. The selection equation has a single instrument for which we

considered two designs- one where it was distributed standard normal and the other where

it was distributed standard cauchy. To allow for fixed and drifting parameter sequences

we adjusted the correlation between the two error terms in the selection model. For fixed

parameters we simulated using 4 distinct values of this correlation- 0,0.5,0.75 and 1. For

drifting parameters we divided these 4 different constants by the square root of the sample

size.

As results in Tables 1-4 indicate, our finite sample results generally agree with our asymp-

totic theory. As we see the RMSE and MSE increase with the sample size when scaled

by the square root of the sample size, indicating the estimator does not converge at the

parametric rate, if at all. In one sense this is not too surprising as no trimming is used.

We also explore the sampling distribution of the estimator. We do this by creating his-

tograms for the estimates attained from the 3000 replications. The graphs are in Figure

1 where the histograms report values of the estimator divided by the square root of the

sample size. We set axis bounds as follows: for the horizontal axis the bounds where ± 5

times the standard deviation of the estimator, divided by the square root of the sample size.

The vertical axis bounds were 0 and 3 times the standard deviation the estimator value,

divided by the square root of the sample size. Specifically, the distribution of the estimator

has a Gaussian component but also exhibits noticeably fat tails. Furthermore as the cor-

relation between the two errors gets further away from 0, the distribution of the estimator

has a noticeably skewed distribution, most notably when the instrument is Gaussian. This

5The tables report the RMSE and MAD multiplied by the square root of the sample size to help us

indicate if the estimator converges at the parametric rate.
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skewness is less pronounced when the instrument has a cauchy distribution.

To compare the finite sample procedures of other estimators we also provide histograms

for different designs, in Figures 2-3. These designs include different bivariate distributions

of u, v, with marginals being normal, logistic or cauchy, with varying levels of correlation.

These bivariate distributions were generated using the Gaussian copula. The other estima-

tors we report histograms for are simple OLS, the Heckman 2-step estimator, the Andrews

and Schafgans estimator, and what we refer to as the Bridge estimator, which is the inverse

weight estimator under local asymptotics. To implement the Andrews Schafgans estimator

we used the true propensity score and only observations where it exceed 0.95. Not surpris-

ingly, as the graphs indicate, OLS is centered away from the truth when there is correlation

between the two errors as it does not account for selection bias.

We also explore the finite sample properties of our new procedure as well as others from

a hypothesis testing perspective. Table 5 reports size and power by listing acceptance and

rejection probabilities using the t-test for various null hypotheses when the data is generated

with the true intercept being 0. These probabilities are reported for OLS, Heckman 2-step,

Andrews and Schafagans (where we tried two different propensity score cutoffs, 0.95, 0.99),

and our procedure. For the case where H0 : α0 = 0 the probabilities reported are those

of accepting the null, whereas for the case H0 : α0 = 0.5 the probabilities reported are

rejection probabilities.

Again, the OLS procedure does as expected having correct size and power properties only

when the correlation in errors is 0. Otherwise it results in severe under rejection of the

null, though it correctly rejects the null α0 = 0.5, for all samples sizes and all correlations

most, if not all of time. The Heckman procedure tends to have low size, especially as the

correlation approached one, and its power is on the low side for sample sizes of 100, but

otherwise correctly rejects the null of α0 = 0.5 most of the time. Still, in terms of both size

and power, we anticipated a better performance as in this design of bivariate normal errors

the parametric Heckman model is correctly specified. The Andrews Shafgans estimator

does quite well in this design both in terms of size only accepting the correct null with

probabilities quite different from 0.95 when the correlation between the errors gets close

to 1. However, in terms of power it was quite low for sample sizes less than 800. This

might suggest the need for a sample size dependent cutoff probability in the trimming used.

The inverse weight estimator appears to accept the null α0 = 0 too infrequently, and this

problem becomes worse as the sample size increases. However it gets the right power with

samples sizes of 400 or higher. Here we attribute the poor size results due to the fact that
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no trimming was employed.

Tables 6 and 7 explore the properties of the bootstrap for inference. Here we report the

fraction of times (from 300 bootstrapped replications and 100 simulations) that true value

lies in the 95%bootstrap interval. This is done for 4 estimators (OLS, Heckman 2-Step, An-

drews and Schafagans, inverse weighting) and two designs of the bivariate error distribution

(bivariate normal, and marginal cauchy with Gaussian copula). For the normal case each

of the four procedures resulted in overly conservative inference for all sample sizes as the

probabilities are equal to 1. This illustrates our points that 1) this is a difficult parameter

to conduct correct inference and 2) the invalidity of the bootstrap. Interestingly, results

improve when we consider the bivariate cauchy error distribution where the probabilities are

generally too small, though it appears to be the least problematic for the IVW procedure.

Nonetheless, even here we are still able to illustrate the poor performance of the bootstrap.

In summary, as the graphs and tables indicate, many of the conclusions from our limiting

distribution theory are reflected in finite sample outcomes. For many designs the estimators

converge very slowly, and the distributions are very nongaussian for all sample sizes. Most

importantly, we have shown that standard inference procedures such as the t− test or the

bootstrap can perform very poorly in small samples.

5 Empirical Illustration

In this section we illustrate the use of our proposed inference methods by applying them

to the well known Mroz (1987) labor supply data set. This data set was also used in

Ahn and Powell (1993) and Newey, Powell, and Walker (1990) to compare parametric and

semiparametric methods. However, in those papers the focus was on the slope coefficients

of the outcome equation, whereas here we focus on the intercept term.

In the Mroz (1987) study, the sample consists of measurements on the characteristics of

753 married women (428 employed and 325 unemployed). The dependent variable in the

outcome equation, the annual hours of work, is specified to depend upon the wage rate,

household income less the woman’s labor income, indicators for young and older children

in the household, and the woman’s age and years of education. Mroz’s study also used the

square of experience and various interaction terms as instrumental variables for the wage

rate, and were also included in his probit analysis of employment status, resulting in 18

parameters to be estimated in the first equation. Ahn and Powell (1993) use the same

conditioning variables in the first equation but only the original 10 variables in their first
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stage kernel regression to attain estimators of the slope coefficients in the outcome (hours

worked) equation.

Our approach here will be to use their estimates of these parameters combined with our

density weighted estimator to estimate the intercept term. Specifically, we will treat the

6 slope coefficients in the outcome equation as known (using the values attained in Ahn

and Powell (1993)) for the coefficients on log wage, nonwife income, young children, older

children, age and education), and estimate the intercept term using our density weighted

expression. Recall our expression involved estimating the density of the index from the

selection equation. Following Ahn and Powell (1993), we use 10 conditioning variables,

but in contrast, we estimate their coefficients by estimating a Probit model. With these

estimated coefficients, we can construct estimated values of the index, to which we apply

kernel density estimation, using a normal kernel function and cross validation for the band-

width, to estimate the density function of the selection equation index. Following Newey,

Powell, and Walker (1990) we treat previous labor market experience, measured in total

years experience, as the excluded variable that is in the employment equation but not the

outcome equation.

Our estimator of α0 is based on the moment condition:

α0 + E[x′iβ0] = EZ

[
d
dzE[y|z]
fZ(z)

]
(5.1)

where fZ(z) denotes the density function of zi and d
dzE[y|z] denotes the derivative of the

regression function of E[y|z].

To estimate α0, note the right hand side of the above equation can be estimated by

θ̂ =
1

n

n∑
i=1

µ̂′(zi)/f̂(zi) (5.2)

where µ̂′(zi) is a local linear estimator of the derivative of the regression function and f̂(zi)

is a kernel estimator of the density function.

so our estimator of α0 is

α̂ = θ̂ − 1

n

n∑
i=1

x′iβ̂ (5.3)
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Using the standard bootstrap we were able create a histogram for the standardized estimator

as well as provide a quantile plot.

As a comparison, we estimated α0 from the parametric Heckman model assuming bivariate

normality of the unobserved disturbances. For the parametric estimator we also bootstrap

to create a histogram of the standardized estimator as well as quantile plots. Histograms

and quantile plots are after the Appendix in Figure 4.

The attained results are interesting, notably that contrast between conclusions drawn from

the parametric and semi parametric approaches. The parametric point estimator for α0

is three times larger in magnitude than the semi parametric point estimator, though both

point estimates are positive. Exploring the bootstrapped confidence regions, the results

from the two approaches are even more strikingly different. As the quantiles plots reveal,

from the parametric approach the intercept is positive at all significant levels, whereas from

the semi parametric quantile plot the intercept is not significantly different from 0 at most

standard significance levels (0.025, 0.05,0.1). This demonstrates how sensitive the results

can be to parametric assumptions.

6 Models with behavior similar to the sample selection model

While this paper has dealt exclusively with the difficulties in conducting uniform inference

for parameters of interest in the sample selection model. the same problems and difficulties

arise when conducting valid inference on parameters of interest in many other widely studied

(from both a theoretical and empirical perspective) nonlinear models. Examples included

discrete triangular systems and non triangular systems, such as the estimation of two player

games often considered in industrial organization. We illustrate the relation to our results

for the sample selection model here.

6.1 Discrete triangular models

Consider the triangular model driven by the unobserved variables y∗1 and y∗2 such that the

observed variables y1 = 1{y∗1 ≥ 0} and y2 = 1{y∗2 ≥ 0} while

y∗1 = z′1γ0 + α y2 − u,

and

y∗2 = z′2δ0 − v.
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The object of our interest will be the interaction parameter α. See Vytlacil and Yildiz (2007)

for a related system without the separability conditions imposed above. Without loss of

generality, we fix the coefficients of linear indices and denote x1 = z′1γ0 and x2 = z′2δ0. We

assume that the underlying data generating process is driven by the distribution of random

variables (X1, X2, U, V ). Khan and Nekipelov (2013) have considered this model for the

case where the error terms (U, V ) are independent from the index covariates (X1, X2) and

demonstrated that the parameter α in this model is identified provided the large support

assumption imposed on the distribution of (X1, X2). Khan and Nekipelov (2013) show that

the large support assumption is essential meaning that without further assumptions the

boundedness of the covariate support leads to a loss of point identification of parameter α.

ASSUMPTION 2 Suppose that

(i) X1 and X2 have a continuous distribution with full support on R2 (which is not con-

tained in any proper one-dimensional linear subspace);

(ii) (U, V ) are independent of (X1, X2) and have a continuously differentiable density with

the full support on R2.

Under Assumption 2, the parameter α can be identified as follows. First note that

lim
x2→−∞

P (Y1 = 1|X1 = x1, X2 = x2) = FU (x1)

and

lim
x2→+∞

P (Y1 = 1|X1 = x1, X2 = x2) = FU (x1 + α).

Second, we transform the limits into the conditional expectations that lead to the expresions

FU (x1) = P (Y1 = 1|X1 = x1, X2 = 0)− E

[
∂
∂x2

P (Y1 = 1|X1, X2 = x2)

fX2|X1
(x2|X1)

∣∣∣∣X1 = x1, X2 ≤ 0

]
,

FU (x1 + α) = −P (Y1 = 1|X1 = x1, X2 = 0) + E

[
∂
∂x2

P (Y1 = 1|X1, X2 = x2)

fX2|X1
(x2|X1)

∣∣∣∣X1 = x1, X2 ≥ 0

]
.

The first equation identifies the marginal distribution of the error in the first equation

and the second equation identifies the interaction parameter of interest. We note that the

moment functions employed in the identification contain the conditional density of the X2

variable in the denominator. This means that, generally speaking, the moment function

does not have a finite second moment which will lead to the non-uniform behavior of the

estimator for the parameter α in the underlying distributions of the errors and covariates.
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6.2 Static games of complete information

Another example where the structure of the identification argument has a similar flavor

to that in the selection model is a 2-player discrete game with complete information (e.g.

Bjorn and Vuong (1985) and Tamer (2003)).

A simple binary game of complete information is characterized by the players’ deterministic

payoffs, strategic interaction coefficients, and random payoff components u and v. There

are two players i = 1, 2 and the action space of each player consists of two points Ai = {0, 1}
with the actions denoted yi ∈ Ai. The payoff of player 1 from choosing action y1 = 1 can

be characterized as a function of player 2’s action:

y∗1 = z′1γ0 + α1y2 − u,

and the payoff of player 2 from choosing action y2 = 1 is characterized as

y∗2 = z′2δ0 + α2y1 − v.

For convenience of analysis we change notation to x1 = z′1γ0 and x2 = z′2δ0. We normalize

the payoff from action yi = 0 to zero and we assume that realizations of covariatesX1 andX2

are commonly observed by the players along with realizations of the errors U and V , which

are not observed by the econometrician and thus characterize the unobserved heterogeneity

in the players’ payoffs. Under this information structure the pure strategy of each player

is the mapping from the observable variables into actions: (u, v, x1, x2) 7→ 0, 1. A pair of

pure strategies constitute a Nash equilibrium if they reflect the best responses to the rival’s

equilibrium actions. The observed equilibrium actions are described by random variables

(from the viewpoint of the econometrician) characterized by a pair of binary equations:

Y1 = 1{X1 + α1Y2 − U > 0},
Y2 = 1{X2 + α2Y1 − V > 0},

(6.1)

where errors U and V are correlated with each other with an unknown distribution. In

particular, we are interested in determining when the strategic interaction parameters α1, α2

can or cannot be estimated at the parametric rate.

As noted in Tamer (2003), the system of simultaneous discrete response equations (6.1) has

a fundamental problem of indeterminacy as it may have the regions where it has multiple

solutions or no solutions at all. If we require the signs of α1 and α2 to be the same, then

the region where multiple solutions can occur is that where the values of |X1| and |X2| are

close to those of α1 and α2. The way to identify the parameters of interest α1 and α2 as
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proposed in Tamer (2003) is to use the asymptotic regions where the solution is unique,

thus forming a system of asymptotic equations:

FU (x1 + α1) = lim
x2→+∞

P (Y1 = 1 |X1, X2),

FV (x2 + α2) = lim
x1→+∞

P (Y2 = 1 |X1, X2).
(6.2)

Provided that Assumption 2 holds, we can identify the parameters of interest through the

explicit expressions

FU (x1 + α1) = −P (Y1 = 1 |X1 = x1, X2 = 0) + E

[
∂
∂x2

P (Y1 = 1 |x1, X2)

fX2|X1
(X2|x1)

∣∣∣∣X1 = x1, X2 ≥ 0

]
,

FV (x2 + α2) = −P (Y2 = 1 |X1 = 0, X2 = x2) + E

[
∂
∂x1

P (Y2 = 1 |X1, x2)

fX1|X2
(X1|x2)

∣∣∣∣X1 ≥ 0, X2 = x2

]
.

This expression demonstrates that the parameters of interest are ”identified at infinity” in

the same sense as the intercept in the sample selection model and the average treatment

effect parameter. As a result, we can apply our previous results to demonstrate that any

uniformly consistent estimator for these parameters (i.e. the one that does not rely on

an assumption regarding a particular tail structure of the distribution (U, V )) will have

the properties analogous to those of the uniformly consistent estimator for the intercept.

In particular, the bootsrap will not deliver a consistent approximation for the asymptotic

confidence sets, and the t-statistics will not converge to the pivotal distribution. We can

however, provide valid inference methods in case where the distribution of the error terms

belongs to a drifting sequence which converges to the distribution with particular tail prop-

erties as the sample becomes larger. In particular, we can use the case where the error terms

are independent as a focal point and construct an approximation with a drifting sequence

that converges to the distribution where the joint density is equal to the product of marginal

densities.

7 Conclusions

This papers considers inference for parameters of interest in nonlinear models with endo-

geneity. Inference becomes quite complicated for these parameters as the limiting distribu-

tion of conventional estimators is non uniform over the parameter space. To address this

problem we propose a new inference procedure based on a drifting parameter sequence,

loosely analogous to the “local to unity” asymptotics in the unit roots literature. We de-

rived the limiting distribution theory which we show can be used to conduct uniformly
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valid inference for the parameters of interest. This method was illustrated for the sample

selection model and we informally suggest how the general method can applied to other

widely studied models.

The work here suggests areas for future research. As stated many other nonlinear models

will fit into this framework, so we aim to formally propose uniform inference procedures

and prove their asymptotic validity.
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Honoré, B., and L. Hu (2019): “Selection Without Exclusion,” FRB of Chicago Working

Paper.

Khan, S., and D. Nekipelov (2018): “Information Structure and Statistical Information

in Discrete Response Models,” Quantitative Economics, 9, 995–1017.

Khan, S., and E. Tamer (2010): “Irregular Identification, Support Conditions and Inverse

Weight Estimation,” Econometrica, 6, 2021–2042.

Lewbel, A. (1997): “Semiparametric Estimation of Location and Other Discrete Choice

Moments,” Econometric Theory, 1997(1), 32–51.

Lewbel, A. (1998): “Semiparametric Latent Variable Model Estimation with Endogenous

or Mismeasured Regressors,” Econometrica, 66(1), 105–122.

29



(2007): “Endogenous Selection or Treatment Model Estimation,” Journal of

Econometrics, 141(2), 777–806.

Ma, X., and J. Wang (forthcoming): “Robust Inference Using Inverse Probability Weight-

ing,” Journal of the American Statistical Association.

McCulloch, J. (1986): “Simple consistent estimators of stable distribution parameters,”

Communications in Statistics-Simulation and Computation, 15(4), 1109–1136.

(1997): “Measuring tail thickness to estimate the stable index α: A critique,”

Journal of Business & Economic Statistics, 15(1), 74–81.

Mroz, T. (1987): “The sensitivity of an empirical model of married women’s hours of work

to economic and statistical assumptions,” Econometrica, 55(1), 765–799.

Müller, U. (2017): “Refining the Central Limit Theorem Approximation via Extreme

Value Theory.,” Princeton University Working Paper.

Müller, U., and Y. Wang (2017): “Fixed-k Asymptotic Inference about Tail Properties,”

Journal of the American Statistical Association, 112, 1334–1343.

Newey, W., J. Powell, and J. Walker (1990): “Semiparametric Estimation of Selec-

tion Models: Some Empirical Results,” American Economic Review Papers and Proceed-

ings, 80, 324–328.

Newey, W. K. (2009): “Two Step Series Estimation of Sample Selection Models,” Econo-

metrics Journal, 12, 217–229.

Oaxaca, R. (1973): “Male-Female Wage Differentials in Urban Labor Markets,” Interna-

tional Economic Review, 14(3), 693–709.

Peligrad, M., and H. Sang (2011): “Central limit theorem for linear processes with

infinite variance,” Journal of Theoretical Probability, pp. 1–18.

Pickands, J. (1975): “Statistical Inference Using Extreme Order Statistics,” Annals of

Statistics, 3, 119–131.

Politis, D., J. Romano, and M. Wolf (1999): Subsampling. Springer.

Powell, J. (1986): “Censored regression quantiles,” Journal of econometrics, 32(1), 143–

155.

30



Resnick, S. (2006): Heavy-tail phenomena: probabilistic and statistical modeling, vol. 10.

Springer.

Romano, J., and M. Wolf (1999): “Subsampling Inference for the Mean of a Heavy

Tailed Distribution,” Metrika, 50, 55–69.

Samorodnitsky, G., and M. Taqqu (1994): Stable non-Gaussian random processes:

stochastic models with infinite variance. Chapman & Hall/CRC.

Smith, J., and F. Welch (1986): Closing the Gap: Forty Years of Economic Progress for

Blacks. Rand Corporation.

Tamer, E. (2003): “Incomplete Bivariate Discrete Response Model with Multiple Equilib-

ria,” Review of Economic Studies, 70, 147–167.

Vytlacil, E., and N. Yildiz (2007): “Dummy endogenous variables in weakly separable

models,” Econometrica, 75(3), 757–779.

A General properties for consistent estimators for the intercept

Although the proposed closed form estimator delivers a convenient approach to construct

a feasible consistent estimator for the intercept in the selection model, it is in general not

obvious whether one can find a “better” estimator that could be used as an alternative for

inference. The observable distribution of the data is fully characterized by distributions

Pr (Y ≤ y, D = 1 |Z = z,X = x), FX(·) and FZ(·). Without loss of generality for simplic-

ity of exposition we do not analyze the case with the covariates in the selection of equation.

Denote η = Pr (Y ≤ y, D = 1, Z ≤ z) the infinite-dimensional element of the model. Let

H 3 η be a pseudometric space with a pseudometric ρ(·, ·). A typical choice of the pseudo-

metric is an Lp pseudometric or a Sobolev pseudometric that also takes into considerations

the derivatives.

We have established that the intercept parameter in the linear selection is identified in H:

θ = lim
z→∞

E [Y |D = 1, Z = z] .

Let θ(η) be the intercept associated with a particular distribution structure η and let θ̂(η)

be an estimator for θ(η). We call this estimator uniformly consistent in H if for any η ∈ H:

θ̂(η)
p−→ θ(η). Our first result shows that the process associated with a rate-normalized

estimator θ̂(η) cannot be stochastically equicontinuous for any “practical” choice of H.
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THEOREM 7 Let θ̂(η) be a uniformly consistent estimator for the intercept parameter

and the pseudometric ρ is dominated by an L∞ pseudometric. Suppose that for some η ∈ H
and rn such that rn/n → 0 for any q ∈ [0, 1] there exists Cq > 0 such that for sufficiently

large n

Pr
(
rn|θ̂(η)− θ(η)| > Cq

)
≤ q.

Then for any ε > 0, δ ∈ [0, 1] and ∆ > 0 there exist η′ ∈ H such that ρ(η, η′) < ε and

Pr
(
rn|θ̂(η′)− θ(η′)| > ∆

)
> δ.

Proof:

For element η consider an element η′ such that the corresponding distribution Pr′ (Y ≤ y, D = 1, Z ≤ z)
has the same conditional distribution F (y |D = 1, Z = z) as η whenever z ≤ z̄ while for all

z > z̄ Eη′ [Y |D = 1, Z = z] = t+ Eη[Y |D = 1, Z = z]. In this case θ(η′) = θ(η) + t.

Let A =
{
rn|θ̂(η′)− θ(η′)| > ∆

}
. Then

Prη′(A) ≥ Prη′ (A ∩ {zi ≤ z̄, ∀i}) .

Note that by our construction

Prη′ (A | {zi ≤ z̄, ∀i}) = Prη (A | {zi ≤ z̄, ∀i})

At the same time, with probability exceeding 1− C−1
∆/2, rn|θ̂(η)− θ(η)| < ∆/2. Therefore

Prη′(A) ≥ Prη′ ({rn t > ∆/2} ∩ {zi ≤ z̄, ∀i}) = 1{rn t > ∆/2}FZ(z̄)n.

Then we can guarantee that ρ(η, η′) < ε by choosing t and z̄ such that t(1−FZ(z̄)) < ε. We

guarantee that the bound is exceeded whenever rn t > ∆/2, and FZ(z̄)n > δ. That occurs

for t = nε/ log(1/δ) and z̄ > F−1
Z (1− ε/t).

Q.E.D.

In other words, this theorem establishes that for each uniformly consistent estimator, in

any neighborhood of a particular distribution of observable variables, we can find another

distribution such that the estimator under that distribution has both a drastically different

convergence rate and a drastically different asymptotic distribution.

This result implies that non-uniform behavior is not only characteristic for the closed form

estimators that we consider in the paper, but for any consistent estimator for the irregularly

identified parameter.
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B Proof of Theorem 2

In the proof of Theorem 4 we demonstrate that if we define the process of partial sums

Ln(t) =

[nt]∑
i=1

(
Wi

an
− [nt]E

[
Wi

an
1{|Wi|/an ≤ 1}

])
,

then Ln(·)⇒ L1+γ(·) where L1+γ(·) is the stable Lévy process on [0, 1].

We note that

nE

[
Wi

an
1{|Wi|/an ≤ 1}

]
→ bn.

Applying the continuous mapping theorem, we conclude that

k∑
i=1

Wn/an − bn
d−→

[∑
nk/n]i=1

(
Wi

an
− [nk/n]E

[
Wi

an
1{|Wi|/an ≤ 1}

])

Therefore,
∑k

i=1Wn/an − bn
d−→ L1+γ(1).

C Proof of Theorem 2

Consider functionH(w) = E
[
W 21{|W | ≤ w}

]
. Provided that ψ(t) = |t|2 Pr

(
fz(Z)

∣∣∣∂E[Y |Z]
∂z

∣∣∣−1
< |t|−1

)
is slowly varying at infinity. In this case we can define function H(w) = E

[
W 21{|W | ≤ w}

]
which is slowly varying at infinity. Next, we apply directly Theorem 2.1. in (Peligrad and

Sang 2011) and establish the result of our theorem.

D Proof of Theorem 3

Imposing the normalization for E [W ] at zero, we conclude that the characteristic function

corresponding to fW (·) φW (t) admits the representation in the neighborhood of t = 0 as

φW (t) = exp(−1
2σ

2t2 + o(t2)) = 1 − 1
2σ

2t2 + o(t2). The second component corresponds

to the density of the heavy tail distribution, and the re-centerining allows us to provide a

simple expression for its characteristic function φc(t) in the neighborhood of 0 as φc(t) =

exp(−1
2κ

2|t|2/(1+c)). The Fourier transform of the difference (1+c)|w|cfW (sign(w)|w|1+c)−
fW (w) (if c > 0) can be represented as

1− 1

2
κ2|t|2/(1+c) − 1 + o(|t|1/(1+c)) = −1

2
κ2|t|2/(1+c) + o(|t|1/(1+c)).
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Now consider the random variable ηn = 1√
n

∑n
i=1W

c
i , with W c

i being the i.i.d. copies of

random variable W c with local distribution (3.1). Then

E [exp(itηn)] =
n∏
i=1

∫
exp

(
iwci

t√
n

)
f cW (wci ) dw

c
i =

(
1− t2σ2

2n
− 1

2ρn n1/(1+c)
κ2|t|2/(1+c) + o(ρ−1

n n−2/(1+c))

)n
= exp

(
− t

2σ2

2

)
exp

(
−κ

2|t|2/(1+c)

2

)
+ o(1).

Thus, as n→∞ the characteristic function of the partial sum distribution under the local

distribution f cW (·) converges to the product of the characteristic function of a Gaussian

random variable with variance σ2 and a random variable with a stable distribution with tail

index 2/(1 + c). By the Leévy convergence theorem, it follows that we can characterize the

asymptotic distribution as a distribution of the sum of a Gaussian random variable with

variance σ2 and an independent random variable with a stable distribution. This result is

formalized in the following theorem.

E Proof of Theorem 4

Provided Theorem 37.1 in (Samorodnitsky and Taqqu 1994), if φ(·) ∈ RV−γ , then for

ν1+γ(·)- (1 + γ)-stable Lévy measure on R with tail behavior ν1+γ((x,+∞]) = x−(1+γ) for

some C > 0 and all x > C and bn selected as in Theorem 2, for all Borel subsets of R+

denoted B

nPr

(
W

bn
∈ B

)
⇒ ν1+γ(·)

Then we consider the random measure associated with the infinite sequence of draws from

the distribution of W and by Theorem 6.3. in (Resnick 2006) it follows that

∞∑
i=1

δ( i
n
,Wi/bn) ⇒ Λ(Leb× ν1+γ),

where δx is the distribution with point mass at x, Λ(·, ·) is the Poisson random measure

with the support on the space of Radon point measures on R+ × ([0,+∞] \ {0}) where

[0,+∞] \ {0} is the set of non-negative reals that is locally uncompatified by defining a

topology on its subsets that exclude the origin. Leb is the Lebesque measure of length and

ν1+γ is the (1 + γ)-stable Lévy measure. Denote U = [0,+∞] \ {0} and the set of Radon

point measures on A by Mr(A).
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We consider the map m : Mr ([0,+∞)× U) 7→ Mr ([0,+∞)× [ε,+∞]), where ε is chosen

to be the point of continuity of function f(w) = ν1+γ([w,+∞)). This map is almost surely

continuous with respect to Λ(Leb × ν1+γ) by Feigin, Kratz and Resnick (1996). Also,

consider functional ∑
i

δ(τi,Ji) 7→
∑
τi≤·

Ji

mapping from Mr ([0,+∞)× U) into D([0, 1],R) (Skorohod space of functions defined on

[0, 1] with values in R) that represents summations. This function is almost surely contin-

uous with respect to Λ(Leb× ν1+γ) by Feigin, Kratz and Resnick (1996)..

As a result, we notice that∑
i

1{|Wi|/an > ε}δ(i/n,Wi/an) ⇒
∑
i

1{ji > ε}δ(ti, ji),

where ji is the increment of the Poisson process defined by Λ(Leb × ν1+γ) at the instant

ti. This result follows from the convergence of the empirical point measure to the Poisson

random measure and the continuity of the map m (restricting the support of the Lévy

measure to [ε,+∞).

Also from the continuity of the summation functional, it follows that

[nt]∑
i=1

Wi

an
1{|Wi|/an > ε} ⇒

∑
ti≤t

ji1{|ji| > ε}, t ∈ [0, 1]

in D([0, 1], R).

Also, by continuity of the summation functional

[nt]∑
i=1

Wi

an
1{1 ≥ |Wi|/an > ε} ⇒

∑
ti≤t

ji1{1 ≥ |ji| > ε}, t ∈ [0, 1]

in D([0, 1], R). Taking expectations, we obtain that

[nt]E

[
Wi

an
1{1 ≥ |Wi|/an > ε}

]
→ t

∫
ε<w<1

wν1+γ(dw).

Consider process of trimmed partial sums

Lεn(t) =

[nt]∑
i=1

(
Wi

an
1{|Wi|/an > ε} − [nt]E

[
Wi

an
1{1 ≥ |Wi|/an > ε}

])
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By the previous results, we conclude that

Lεn(·)⇒ Lε1+γ(·),

where Lε1+γ(·) is the “restricted” 1 + γ-stable Lévy process such that

Lε1+γ(t) =
∑
ti≤t

ji1{1 ≥ |ji| > ε} − t
∫
ε<w<1

wν1+γ(dw).

Then, using the Itô representation of the Lévy process:

Lε1+γ(t)→ L1+γ(t)

almost everywhere on w locally uniformly it t ∈ [0, 1] as ε → 0 If ds(·, ·) is the Skoro-

hod metric on D([0,+∞)) then provided that local uniform convergence implies Skorohod

convergence, we see that

ds
(
Lε1+γ(·), L1+γ(·)

)
→ 0

almost surely as ε → 0. As a result, given that almost sure convergence implies weak

convergence, then

Lε1+γ(·)⇒ L1+γ(·)

Consider the process or regular partial sums

Ln(t) =

[nt]∑
i=1

(
Wi

an
− [nt]E

[
Wi

an
1{|Wi|/an ≤ 1}

])

Next we demonstrate the stochastic equicontinuity. Consider the following sequence of

expressions:

Pr

(
sup
t∈[0,1]

‖Lεn(t)− Ln(t)‖ > δ

)

≤ Pr

(
sup
t∈[0,1]

∣∣∣∣∣∣
[nt]∑
i=1

(
Wi

an
1{|Wi|/an < ε} − E

[
Wi

an
1{1 ≥ |Wi|/an < ε}

])∣∣∣∣∣∣ > δ

)

= Pr

(
max

0≤k≤n

∣∣∣∣∣
k∑
i=1

(
Wi

an
1{|Wi|/an < ε} − E

[
Wi

an
1{1 ≥ |Wi|/an < ε}

])∣∣∣∣∣ > δ

)
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Applying Doob’s inequality, we conclude that

Pr

(
sup
t∈[0,1]

‖Lε1+γ(t)− L1+γ(t)‖ > δ

)

≤
Var

(
W
an

1{|W |/an < ε}
)

δ2

Next we note that

E

[
W

an
1{|W |/an < ε}

]
→
∫
|w|≤ε

w2ν1+γ(dw) = O(ε1−γ) = o(1)

, as ε→ 0. Therefore, for any δ > 0 we show that

lim
ε→∞

lim sup
n→∞

P

(
sup
t∈[0,1]

‖Lεn(t)− Ln(t)‖ > δ

)
= 0.

This implies that

lim
ε→∞

lim sup
n→∞

P (ds (Lεn(·), Ln(·)) > δ) = 0.

This leads us to conclusion that Ln(·)⇒ L1+γ(·).
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TABLE 1

Design 1: normal instruments, fixed parameters

Mean Bias Median Bias

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

c = 0.00 -0.1983 -0.1374 -0.2712 0.0822 -0.0012 0.0009 0.0068 0.0086

c = 0.50 -0.0005 0.0074 0.0506 -0.1461 -0.2205 -0.2211 -0.2190 -0.2222

c = 0.75 0.0986 0.1790 0.0587 -0.2609 -0.3237 -0.3279 -0.3300 -0.3370

c = 1.00 0.2057 0.2835 0.1700 -0.3762 -0.4326 -0.4322 -0.4400 -0.4570

RMSE MAD

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

c = 0.00 38.3796 72.5744 157.8260 106.4073 3.1213 3.6428 4.7534 5.9159

c = 0.50 36.7891 72.5922 157.7288 106.4602 3.7862 4.7681 6.3180 8.6620

c = 0.75 36.9827 72.4332 157.7312 106.6476 4.4494 5.8431 7.8785 11.2825

c = 1.00 36.8312 72.5112 157.7495 106.8617 5.2608 7.0809 9.7935 14.1935

TABLE 2

Design 1: normal instruments, drifting parameters

Mean Bias Median Bias

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

c = 0.00 -0.0242 -0.1534 -0.2182 0.0517 -0.0015 0.0072 0.0043 0.0102

c = 0.50 -0.0436 0.1685 0.2293 -0.0438 -0.0257 0.0067 0.0070 -0.0015

c = 0.75 0.0535 0.1759 0.2358 -0.0397 -0.0355 -0.0134 0.0124 -0.0016

c = 1.00 0.0640 0.1835 0.2403 -0.0357 -0.0501 -0.0239 0.0152 -0.0063

RMSE MAD

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

c = 0.00 27.6662 134.1118 146.0589 237.0683 3.2291 3.6671 4.2015 6.0014

c = 0.50 27.3730 134.2254 146.0701 237.0692 3.2690 3.6758 4.2004 6.0276

c = 0.75 27.4384 134.2950 146.0883 237.0829 3.2707 3.6993 4.2025 6.0233

c = 1.00 27.3751 134.2166 146.0793 237.0718 3.3033 3.6770 4.2129 6.0072

TABLE 3

Design 3: cauchy instruments, constant parameters

Mean Bias Median Bias

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

c = 0.00 0.2714 1.4475 1.7833 -0.4549 -0.0314 0.0313 0.0245 0.0048

c = 0.50 0.4334 1.6107 1.6.428 -0.2749 -0.1410 0.02123 -0.1584 -0.1862

c = 0.75 0.5207 1.7115 1.5450 -0.1945 -0.2289 -0.3028 0.2435 -0.2713

c = 1.00 0.5971 1.7806 1.5421 -0.1449 -0.3123 -0.3915 0.3325 -0.3577

RMSE (103×) MAD

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

c = 0.00 0.4116 0.5118 2.0589 0.5683 9.2291 12.6671 13.2015 14.0014

c = 0.50 0.43730 0.5254 2.0701 0.5692 9.2690 1 2.6758 13.2004 15.0276

c = 0.75 0.4384 0.5750 2.0883 0.5829 9.2707 12.6993 13.2025 15.9233

c = 1.00 0..4751 0.5766 2.0793 0.5718 9.3033 12.6770 13.2129 16.0072

TABLE 4

Design 3: cauchy instruments, drifting parameters

Mean Bias Median Bias

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

c = 0.00 -1.5227 -0.4932 1.8262 -1.6800 -0.0275 0.0112 0.0052 0.0005

c = 0.50 -1.5394 -0.5053 1.8174 -1.6863 -0.0459 -0.0029 -0.0055 - 0.0039

c = 0.75 -1.5472 -0.5114 1.8131 -1.6896 -0.0555 -0.0094 -0.0068 -0.0074

c = 1.00 -1.5554 -0.5174 1.8087 -1.6926 -0.0658 -0.0178 -0.0110 - 0.0106

RMSE (103×) MAD

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

c = 0.00 0.2484 0.3895 0.63151 1.0910 8.8074 11.4595 13.8240 14.5414

c = 0.50 0.2487 0.3992 0.63142 1.0910 8.7724 11.5162 13.8324 14.5630

c = 0.75 0.2487 0.3957 0.6366 1.0910 8.7990 11.5741 13.8390 14.5157

c = 1.00 0.0.2489 0.3959 0.6325 1.0911 8.7863 11.5675 13.8244 14.4495
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TABLE 5

Size and Power of t test

Design 1: Bivariate normal, correlation ρ

OLS

H0 : α0 = 0 H0 : α0 = 0.5

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

ρ = 0.00 0.949 0.949 0.947 0.947 0.997 1.00 1.00 1.00

ρ = 0.5 0.514 0.216 0.024 0.0 1.00 1.00 1.00 1.00

ρ = 0.75 0.153 0.024 0.00 0.00 0.991 1.00 1.00 1.00

ρ = 0.95 0.066 0.002 0.00 0.00 0.975 1.00 1.00 1.00

Heckman

ρ = 0.00 0.812 0.833 0.832 0.834 0.745 0..935 0.995 1.00

ρ = 0.50 0.803 0.827 0.820 0.807 0.746 0.935 1.00 1.00

ρ = 0.75 0.794 0.717 0.786 0.736 0.862 0.928 1.00 1.00

ρ = 0.95 0.738 0.694 0.579 0.394 0.675 0.888 0.985 1.00

Andrews Schafagans

H0 : α0 = 0 H0 : α0 = 0.5

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

ρ = 0.00 0.972 0.981 0.984 0.987 0.330 0.605 0.917 0.999

ρ = 0.50 0.979 0.966 0..950 0.929 0.235 0.440 0.781 0.986

ρ = 0.75 0.940 0.947 0.940 0.800 0.195 0.345 0.637 0.905

ρ = 0.95 0.911 0.907 0.805 0..580 0.149 0.268 0.548 0.879

IVW

ρ = 0.00 0.775 0.732 0.653 0.598 0.696 0.806 0.933 0.982

ρ = 0.50 0.782 0.736 0.662 0.607 0.694 0.814 0.924 0.983

ρ = 0.75 0.785 0.740 0.664 0.616 0.688 0.816 0.930 0.988

ρ = 0.95 0.791 0.754 0.694 0.629 0.687 0.825 0.935 0.998

TABLE 6

Bootstrap Coverage Probabilities

Design 1: Bivariate normal, correlation ρ

OLS Heckman 2 Step

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

ρ = 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ = 0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ = 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ = 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Andrews and Schafagans IVW

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

ρ = 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ = 0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ = 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ = 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

TABLE 7

Bootstrap Coverage Probabilities

Design 1: Marginal cauchy, Gaussian Copula correlation ρ

OLS Heckman 2 Step

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

ρ = 0.00 0.90 0.90 0.89 0.85 0.71 0.70 0.76 0.83

ρ = 0.5 0.86 0.82 0.83 0.83 0.77 0.71 0.60 0.58

ρ = 0.75 0.86 0.83 0.87 0.87 0.67 0.65 0.61 0.57

ρ = 0.95 0.85 0.84 0.88 0.89 0.57 0.57 0.53 0.50

Andrews and Shafagans IVW

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

ρ = 0.00 0.66 0.83 0.72 0.77 0.91 0.90 0.89 0.85

ρ = 0.5 0.75 0.71 0.65 0.54 0.86 0.82 0.83 0.83

ρ = 0.75 0.65 0.62 0.40 0.20 0.901 0.83 0.85 0.85

ρ = 0.95 0.62 0.40 0.14 0.03 0.95 0.85 0.88 0.89
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Figure 1: Results for Inverse Weight Estimator
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(a) Normal Instrument, Fixed Parameters
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(b) Normal Instrument, Drifting Parameters
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(c) Cauchy Instrument, Fixed Parameters
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(d) Cauchy Instrument, Drifting Parameters



Figure 2: Results for other Estimators, Gaussian Disturbances

(a) OLS (b) Heckman

(c) Andrews and Schafgans (d) Bridge estimator



Figure 3: Results for other Estimators, Cauchy Disturbances

(a) OLS (b) Heckman

(c) Andrews and Schafgans (d) Bridge estimator



Figure 4: Application using Mroz Data
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