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Abstract

We study the identification and estimation of treatment effect parameters in weakly separable models. In

their seminal work, Vytlacil and Yildiz (2007) showed how to identify and estimate the average treatment

effect of a dummy endogenous variable when the outcome is weakly separable in a single index. Their

identification result builds on a monotonicity condition with respect to this single index. In comparison,

we consider similar weakly separable models with multiple indices, and relax the monotonicity condition

for identification. Unlike Vytlacil and Yildiz (2007), we exploit the full information in the distribution of

the outcome variable, instead of just its mean. Indeed, when the outcome distribution function is more

informative than the mean, our method is applicable to more general settings than theirs; in particular we

do not rely on their monotonicity assumption and at the same time we also allow for multiple indices. To

illustrate the advantage of our approach, we provide examples of models where our approach can identify

parameters of interest whereas existing methods would fail. These examples include models with multiple

unobserved disturbance terms such as the Roy model and multinomial choice models with dummy endogenous

variables, as well as potential outcome models with endogenous random coefficients. Our method is easy to

implement and can be applied to a wide class of models. We establish standard asymptotic properties such

as consistency and asymptotic normality.
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1 Introduction

Consider a weakly separable model with a binary endogenous variable:

Y = g(v1(X,D), v2(X,D), ...vJ(X,D), ε) (1.1)

D = 1 {θ(Z)− U > 0} (1.2)

where (v1(X,D), v2(X,D), ...vJ(X,D)) ≡ v(X,D) is a J-vector of unknown linear or nonlin-

ear indices in the outcome equation (1.1) and D is a binary endogenous variable defined by

the selection equation (1.2). Here X ∈ Rdx and Z ∈ Rdz are vectors of observable exogenous

variables, which may have overlapping elements. Similar to Vytlacil and Yildiz (2007) we

require exclusion restrictions that there is some element in Z excluded from X, and that

we can vary X after conditioning on θ(Z). In the system of equations above, U is the un-

observable random variable normalized to follow the uniform distribution U(0, 1) and the

error term ε in the outcome equation is allowed to be a random vector. We assume (X,Z)

are independent of (ε, U). Note that we allow v(X,D) to be a vector of multiple indices,

whereas the method in Vytlacil and Yildiz (2007) can only be applied when it is a single

index.

Since Vytlacil and Yildiz (2007), other important work has considered identification

and estimation of related models, but under alternative conditions. Examples with binary

endogenous variables include Han and Vytlacil (2017), Vuong and Xu (2017), Lewbel, Jacho-

Chavez, and Encarnciono (2016), Khan, Maurel, and Zhang (2019). Work for models when

the endogenous variable is continuous includes Imbens and Newey (2009), D’Haultfoeuille

and Fevrier (2015) and Torgovitsky (2015). Feng (2020) shows how to identify nonseparable

triangular models where the endogenous variable is discrete and has larger support than the

instrument variable.1

As in the conventional framework, two potential outcomes Y1 and Y0 satisfy

YD = g(v(X,D), ε) for D = 0, 1.

We only observe (Y,D,X,Z), where Y = DY1 + (1−D)Y0. In this model, as in Vytlacil and

Yildiz (2007), we do not impose parametric distribution on the error term or a linear index

structure. Vytlacil and Yildiz (2007) assumes that v(X,D) ∈ R is a single index, and

E [g(v, ε)|U = u] is strictly increasing in v ∈ R for all u. (1.3)

1All these papers focus on point identification. For partial identification of a model with a binary outcome,

see Shaikh and Vytlacil (2011) and Mourifié (2015).
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Unlike Vytlacil and Yildiz (2007), we do not impose any monotonicity structure. That is

because our approach exploits the full information in the distribution of the outcome variable,

instead of just its mean. Indeed, when the outcome distribution function is more informative

than the mean, our method is applicable to more general settings than theirs; in particular

we do not rely on their monotonicity assumption and at the same time we also allow for

multiple indices.

In Sections 3 and 4 we provide some examples in which such a monotonicity condi-

tion fails, but the average effect of the binary endogenous variable is still identified. In

addition, we allow for a weakly separable model with multiple indices, that is, v(X,D) =

(v1(X,D), v2(X,D), ..., vJ(X,D)) ∈ RJ .

We consider the identification and estimation of the average treatment effect of D on

Y , E(Y1|X ∈ A), E(Y0|X ∈ A) and E(Y1 − Y0|X ∈ A), for some set A, without the

aforementioned monotonicity. Indeed, for the case with multiple indices v(X,D) ∈ RJ , the

monotonicity condition is no longer well defined.

Vuong and Xu (2017) established nonparametric identification of individual treatment

effects in a fully nonseparable model that includes a binary endogenous regressor, without

the nonlinear index structure. They assume ε is a scalar and g is strictly increasing in ε. In

their setting, monotonicity in the outcome equation provides the identifying restriction to

extrapolate information from local treatment effects to population treatment effects.

2 Identification

Generally speaking, our identification strategy will be based on the notion of matching2.

Consider the identification of E(Y1|X = x) for some x ∈ S1, where Sd denotes the support

of X given D = d ∈ {0, 1}. Note that because (ε, U)⊥(X,Z),

E(Y1|X = x) = E(Y1|X = x, Z = z)

= E(DY1|X = x, Z = z) + E[(1−D)Y1|X = x, Z = z]

= P (z)E(Y |D = 1, X = x, Z = z) + [1− P (z)]E(Y1|D = 0, X = x, Z = z) (2.1)

2See Ahn and Powell (1993), Chen, Khan, and Tang (2016), Vytlacil and Yildiz (2007), and more recently

Auerbach (2019) for examples of papers that attain identification through matching.
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where P (z) ≡ E(D|Z = z). The only term that is not directly identifiable on the right-hand

side of (2.1) is

E(Y1|D = 0, X = x, Z = z) = E[g(v(x, 1), ε)|U ≥ P (z)].

The main idea behind our approach follows that of Vytlacil and Yildiz (2007), which is to

find some x̃ ∈ S0 such that

v(x, 1) = v(x̃, 0) (2.2)

so that

E(Y |D = 0, X = x̃, Z = z) = E(Y0|D = 0, X = x̃, Z = z)

= E(g(v(x̃, 0), ε)|U ≥ P (z)) = E(g(v(x, 1), ε)|U ≥ P (z)).

Unlike Vytlacil and Yildiz (2007), we utilize the full distribution of Y (rather than its

first moment) while searching for such pairs of (x, x̃) in (2.2). This allows us to relax the

single-index and monotonicity conditions in Vytlacil and Yildiz (2007).

For any p on the support of P (Z) given X = x, and for all y define

h∗1(x, y, p) = E(D1 {Y ≤ y} |X = x, P (Z) = p)

= E [1 {U < P (Z)} 1 {g(v(X, 1), ε) ≤ y} |X = x, P (Z) = p]

=

∫ p

0

Fg|u(y; v(x, 1))du, (2.3)

where

Fg|u(y; v(x, d)) ≡ E[1{g(v(x, d), ε) ≤ y}|U = u]

with v(x, d) being a realized index at X = x and the expectation in the definition of Fg|u is

with respect to the distribution of ε given U = u. The last equality in (2.3) holds because

of independence between (ε, U) and (X,Z). By construction, h∗1(x, y, p) is directly identified

from the joint distribution of (D, Y,X, Z) in the data-generating process. Furthermore, for

any pair p1 > p2, define:

h1(x, y, p1, p2) ≡ h∗1(x, y, p1)− h∗1(x, y, p2) =

∫ p1

p2

Fg|u(y; v(x, 1))du.

Likewise, define

h∗0(x, y, p) = E((1−D)1 {Y ≤ y} |X = x, P (Z) = p)

= E [1 {U ≥ P (Z)} 1 {g(v(X, 0), ε) ≤ y} |X = x, P (Z) = p]

=

∫ 1

p

Fg|u(y; v(x, 0))du.
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and let

h0(x, y, p1, p2) ≡ h∗0(x, y, p2)− h∗0(x, y, p1) =

∫ p1

p2

Fg|u(y; v(x, 0))du.

Let Px denote the support of P (Z) given X = x. It can be shown that for any x ∈ S1 and

x̃ ∈ S0, and any y,

h1(x, y, p, p
′) = h0(x̃, y, p, p

′) for all p > p′ on Px ∩ Px̃. (2.4)

if and only if

Fg|p(y; v(x, 1)) = Fg|p(y; v(x̃, 0)) for all p ∈ Px ∩ Px̃. (2.5)

Sufficiency is immediate from the definition of h1 and h0. To see necessity, note that for all

p > p′ on Px ∩ Px̃,

∂h1(x, y, p̃, p
′)

∂p̃

∣∣∣∣
p̃=p

=
∂h∗1(x, y, p̃)

∂p̃

∣∣∣∣
p̃=p

= Fg|p(y; v(x1, 1))

and

∂h0(x̃, y, p̃, p
′)

∂p̃

∣∣∣∣
p̃=p

= − ∂

∂p̃
h∗0(x̃, y, p̃)

∣∣∣∣
p̃=p

= Fg|p(y; v(x̃, 0)).

Thus (2.4) and (2.5) are equivalent.

We collect the assumptions for identification as follows:

ASSUMPTION A-1: The distribution of U is absolutely continuous with respect to Lebesgue

measure.

ASSUMPTION A-2: The random vectors (U, ε) and (X,Z) are independent.

ASSUMPTION A-3: The random variable g(v(X, 1), ε) and g(v(X, 0), ε) have finite first

moments conditional on U = u for all u ∈ [0, 1]..

ASSUMPTION A-4: For any (x, x̃) ∈ S1 × S0, Fg|p(y; v(x, 1)) = Fg|p(y; v(x, 0)) holds for all

y and p ∈ Px ∩ Px̃ if and only if v(x, 1) = v(x̃, 0).

ASSUMPTION A-5: Pr(X ∈ S1) > 0 and Pr(X ∈ S0) > 0.

Note that A-4 is weaker than Assumption 4 in Vytlacil and Yildiz (2007). Specifi-

cally, to identify pairs (x, x̃) with v(x, 1) = v(x̃, 0), Vytlacil and Yildiz (2007) relies on
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the assumption that v(X,D) ∈ R is a single index and that for any (x, x̃) ∈ (S1 × S0),

E [g(v(x, 1), ε)|U = u] = E [g(v(x̃, 0), ε)|U = u] if and only if v(x, 1) = v(x̃, 0). There are

two shortcomings with this approach. First, it requires the condition (Assumption 4) that

E [g(v(x, d), ε)|U = p] is a strictly monotonic function of v(x, d). Second, when v(x, d) is a

vector of multiple indices instead of a single index, their approach breaks down. In compar-

ison, we achieve the same purpose by matching conditional distributions Fg|p(·; v(x, 1)) and

Fg|p(·; v(x̃, 0)). As we show in Section 3, in several important applications, the outcome Y is

either discrete (e.g. multinomial choices), or multi-dimensional with both discrete and con-

tinuous components (e.g., potential outcomes determined by a Roy model). In either cases,

the latent index function v(.) is vector-valued and the monotonicity condition in Vytlacil

and Yildiz (2007) is not satisfied.

3 Examples

We now present several examples in which the latent indices are multi-dimensional. In the

first and third example, the monotonicity condition in Vytlacil and Yildiz (2007) is not sat-

isfied; in the second example, the identification requires a generalization of the monotonicity

condition into an invertibility condition in higher dimensions.

Example 1. (Heteroskaedastic shocks in outcome) Consider a triangular system where

a continuous outcome is determined by double indices v(X,D) ≡ (v1(X,D), v2(X,D)):

Y = g(v(X,D), ε) = v1(X,D) + v2(X,D)ε for D ∈ {0, 1}.

The selection equation determining the actual treatment is the same as (1.2). In this case

the concept of monotonicity in v ∈ R2 is not well-defined, so the procedure proposed in

Vytlacil and Yildiz (2007) is not suitable here3. Nevertheless, we can apply the method in

Section 2 to identify the average treatment effect by using the distribution of outcome to

find pairs of x and x̃ such that v(x, 1) = v(x̃, 0). Assume the range of v2(·) is positive. To

see the necessity in Assumption A4, note that

Fg|u(y; v(x, d)) = E [v1(x, d) + v2(x, d)ε ≤ y|U = u]

= Fε|u

(
y − v1(x, d)

v2(x, d)

)
3For this particular design, the approach proposed in Vuong and Xu (2017) should be valid. But it will

not be for a slightly modified model, such as Y = v1(X,D) + (e2 + v2(X,D) ∗ e1), whereas ours will be.
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for d = 0, 1. If the CDF of ε is increasing over R, then for all y and x ∈ S1 and x̃ ∈ S0,

Fg|u(y; v(x, 1)) = Fg|u(y; v(x̃, 0))

if and only if

y − v1(x, 1)

v2(x, 1)
=
y − v1(x̃, 0)

v2(x̃, 0)
.

Differentiating with respect to y yields

v2(x, 1) = v2(x̃, 0)

which in turn implies

v1(x, 1) = v1(x̃, 0).

The sufficiency in Assumption A-4 is straight-forward.

Example 2. (Multinomial potential outcome) Consider a triangular system where

the outcome is multinomial. The multinomial response model has a long and rich history in

both applied and theoretical econometrics. Recent examples in the semiparametric literature

include Lee (1995), Ahn, Powell, Ichimura, and Ruud (2017), Shi, Shum, and Song (2018),

Pakes and Porter (2014), Khan, Ouyang, and Tamer (2019). But unlike the work here, none

of those papers allow for dummy endogenous variables or potential outcomes.

Y = g(v(X,D), ε) = arg max
j=0,1,...,J

y∗j,D

where

y∗j,D = vj(X,D) + εj for j = 1, 2, ..., J ; y∗0,D = 0.

In this case the index v ≡ (vj)j≤J and the errors ε ≡ (εj)j≤J are both J-dimensional. The

selection equation that determines D is the same as (1.2). In this case, we can replace

1{Y ≤ y} by 1{Y = y} in the definition of h1, h0, h
∗
1, h
∗
0 and Fg|u(·; v). Then for d = 0, 1 and

j ≤ J ,

Fg|u(j; v(x, d)) ≡ E[1{g(v(x, d), ε) = j}|U = u]

= Pr {vj(x, d) + εj ≥ vj′(x, d) + εj′ ∀j′ ≤ J | U = u} .
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By Ruud (2000) and Ahn, Powell, Ichimura, and Ruud (2017), the mapping from v ∈ RJ

to (Fg|u(j; v) : j ≤ J) ∈ RJ is smooth and invertible provided that ε ∈ RJ has non-negative

density everywhere. This implies Assumption A-4.

Example 3. (Potential outcome from the Roy model) Consider a treatment effect

model with an endogenous binary treatmentD and with the potential outcome determined by

a latent Roy model. The Roy model has also been studied extensively from both applied and

theoretical perspectives. See for example the literature survey in Heckman and E.Vytlacil

(2007) and the seminal paper in Heckman and Honoré (1990).

Here the observed outcome consists of two pieces: a continuous measure Y = DY1 +(1−
D)Y0 and a discrete indicator W = DW1 +(1−D)W0 for d = 0, 1. These potential outcomes

are given by

Yd = max
j∈{a,b}

y∗j,d and Wd = arg max
j∈{a,b}

y∗j,d

where a and b index potential outcomes realized in different sectors, with

y∗j,d = vj(X, d) + εj.

The binary endogenous treatment D is determined as in the selection equation (1.2). For

example, D ∈ {1, 0} indicates whether an individual participates in certain professional

training program, Wd ∈ {a, b} indicates the potential sector in which the individual is

employed, y∗j,d is the potential wage from sector j under treatment D = d, and Yd ∈ R is the

potential wage if the treatment status is D = d. As before, we maintain that (X,Z)⊥(ε, U).

The parameter of interest is

Pr{Y1 ≤ y,W1 = a|X}

which by the independence (X,Z)⊥(ε, U) and an application of the law of total probability

can be decomposed into directly identifiable quantities and a counterfactual quantity

Pr{Y1 ≤ y,W1 = a | X = x, Z = z,D = 0}
= Pr {vb(x, 1) + εb < va(x, 1) + εa ≤ y | U ≥ P (z)} . (3.1)

Again, we seek to identify this counterfactual quantity by finding x̃ ∈ S0 such that

va(x, 1) = va(x̃, 0) and vb(x, 1) = vb(x̃, 0) (3.2)
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This would allow us to recover the right hand side of (3.1) as

Pr{Y0 ≤ y,W0 = a | X = x̃, Z = z,D = 0}.

To find such a pair of (x, x̃), define hd,W (x, p, p′), h∗d,W (x, p) by replacing 1{Y ≤ y} with

1{W = a} in the definition of hd, h
∗
d in Section 2. Similarly, define hd,Y (x, y, p, p′), h∗d,Y (x, y, p)

by replacing 1{Y ≤ y} with 1{Y ≤ y,W = a} in the definition of hd, h
∗
d in Section 2. Then

hd,W (x, p1, p2) =

∫ p1

p2

Pr{vb(x, d) + εb < va(x, d) + εa|U = u}du;

hd,Y (x, y, p1, p2) =

∫ p1

p2

Pr{vb(x, d) + εb < va(x, d) + εa ≤ y|U = u}du;

and hd,W (x, p1, p2) and hd,Y (x, y, p1, p2) are both identified over their respective domains

by construction. Assume (εa, εb) is continuously distributed with positive density over R2

conditional on all u. Then the statement

“h1,W (x, p, p′) = h0,W (x̃, p, p′) and h1,Y (x, y, p, p′) = h0,Y (x̃, y, p, p′)

for all y and p > p′ on Px ∩ Px̃”

holds true if and only if (3.2) holds. Then matching h1,W (x, p, p′) = h0,W (x̃, p, p′) ensures

va(x, 1)− vb(x, 1) = va(x̃, 0)− vb(x̃, 0); (3.3)

while matching h1,Y (x, y, p, p′) = h0,Y (x̃, y, p, p′) at the same time ensures that in addition

to (3.3)

va(x, 1) = va(x̃, 0). (3.4)

Combining (3.3) and (3.4) is equivalent to (3.2).

4 Extension

The identification strategy we have used so far requires matching exogenous variables x, x̃

on S0, S1. In some cases, with the outcome being continuous, we can construct similar

argument for identifying a counterfactual quantity in a treatment effect model by matching

different elements on the support of continuous outcome. This approach was not investigated

in Vytlacil and Yildiz (2007), which focused on the use of first moment of outcome. The

following example illustrates this point.
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Example 4. (Potential outcome with random coefficients) Random coefficient models

are prominent in both the theoretical and applied econometrics literature. They permit a

flexible way to allow for conditional heteroscedasticity and unobserved heterogeneity. See,

for example Hsiao and Pesaran (2008) for a survey. Here we consider a treatment effect

model where the potential outcome is determined through random coefficients:

Y = DY1 + (1−D)Y0 where Yd = (αd +X ′βd) for d = 0, 1

and the binary endogenous treatment D is determined as in the selection equation (1.2).

The random intercepts αd ∈ R and the random vectors of coefficients βd are given by

αd = ᾱd(X) + ηd and βd = β̄d(X) + εd

where for any x and d ∈ {0, 1}., (ᾱd(x), β̄d(x)) ∈ RK+1 is a vector of constant parameters

while ηd ∈ R and εd ∈ RK are unobservable noises.

As in Vytlacil and Yildiz (2007), assume some elements in Z in the selection equation

are excluded from X. We allow the vector of unobservable terms (ε1, ε0, η0, η1, U) to be

arbitrarily correlated. We also assume that

(X,Z) ⊥ (ε1, ε0, η0, η1, U), (4.1)

with the marginal distribution of U normalized to standard uniform, so that θ(Z) is directly

identified as P (Z) ≡ E(D|Z = z).

In this example our goal is to identify the conditional distribution of Yd given X = x for

d = 0, 1. From this result we can identify parameters of interest such as average treatment

effects, quantile treatment effects, etc. Let GP |x denote the conditional distribution of P ≡
P (Z) given X = x, which is directly identifiable from the data-generating process. By

construction,

Pr{Y1 ≤ y|X = x} =

∫
Pr{Y1 ≤ y|X = x, P = p}dGP |x(p),

where

Pr{Y1 ≤ y|X = x, P = p}
= E [D1{Y1 ≤ y}|X = x, P = p] + E [(1−D)1{Y1 ≤ y}|X = x, P = p] .

The first term on the right-hand side is identified as

E[D1{Y ≤ y}|X = x, P = p],
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while the second term is counterfactual and can be written as

φ0(x, y, p) ≡ E[1{U ≥ P}1{α1 +X ′β1 ≤ y}|X = x, P = p]

= E[1{U ≥ p}1{ᾱ1(x) + η1 + x′(β̄1(x) + ε1) ≤ y}]

=

∫ 1

p

Pr{η1 + x′ε1 ≤ y − ᾱ1(x)− x′β̄1(x)|U = u}du.

For any p on the support of P given X = x, define

h∗1(x, y, p) ≡ E [D1 {Y ≤ y} |X = x, P = p]

= E [1 {U < P} 1 {α1 +X ′β1 ≤ y} |X = x, P = p] = E [1 {U < p} 1 {α1 + x′β1 ≤ y}]

=

∫ p

0

Pr{η1 + x′ε1 ≤ y − ᾱ1(x)− x′β̄1(x)|U = u}du,

where the second equality uses (4.1). Likewise, under (4.1) we have:

h∗0(x, y, p) ≡ E [(1−D)1 {Y ≤ y} |X = x, P = p]

=

∫ 1

p

Pr{η0 + x′ε0 ≤ y − ᾱ0(x)− x′β̄0(x)|Ui = u}du.

Assume4

F(η1,ε1)|U=u = F(η0,ε0)|U=u for all u ∈ [0, 1]. (4.2)

Under (4.2), we have

φ0(x, y, p) =

∫ 1

p

Pr{η0 + x′ε0 ≤ y − ᾱ1(x)− x′β̄1(x)|U = u}du. (4.3)

Suppose for each pair (x, y) we can find t(x, y) such that

y − ᾱ1(x)− x′β̄1(x) = t(x, y)− ᾱ0(x)− x′β̄0(x).

Then by construction

h∗0(x, t(x, y), p) ≡
∫ 1

p

Pr{η0 + x′ε0 ≤ t(x, y)− ᾱ0(x)− x′β̄0(x)|U = u}du

=

∫ 1

p

Pr{η0 + x′ε0 ≤ y − ᾱ1(x)− x′β̄1(x)|U = u}du = φ0(x, y, p)

4This type of distributional equality assumption generalizes the exact equality of ε1, ε0 as can be found in

for example Vytlacil and Yildiz (2007). Distributional equality has been used to motivate the rank similarity

condition imposed frequently in the econometrics literature- see for example Chernozhukov and Hansen

(2005), Frandsen and Lefgren (2018), Dong and Shen (2018), Chen and Khan (2014).
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because of (4.3). Thus the counterfactual φ0(x, y, p) would be identified as h∗0(x, t(x, y), p).

It remains to show that for each pair (x, y) we can uniquely recover t(x, y) using quan-

tities that are identifiable in the data-generating process. To do so, we define two auxiliary

functions as follows: for p1 > p2 on the support of P given X = x, let

h1(x, y, p1, p2) ≡ h∗1(x, y, p1)− h∗1(x, y, p2)

=

∫ p1

p2

Pr{η1 + x′ε1 < y − ᾱ1(x)− x′β̄1(x)|U = u}du;

and

h0(x, y, p1, p2) ≡ h∗0(x, y, p2)− h∗0(x, y, p1)

=

∫ p1

p2

Pr{η0 + x′ε0 < y − ᾱ0(x)− x′β̄0(x)|U = u}du.

Suppose ηd + x′εd is continuously distributed over R for all values of x conditional on all

u ∈ [0, 1]. Then for any fixed pair (x, y) and p1 < p2,

h1(x, y, p1, p2) = h0(x, t(x, y), p1, p2)

if and only if

t(x, y) = y − ᾱ1(x)− x′β̄1(x) + ᾱ0(x) + x′β̄0(x).

To see this, suppose t(x, y) > y − ᾱ1(x)− x′β̄1(x) + ᾱ0(x) + x′β̄0(x), then (4.2) implies that

h0(x, t(x, y), p1, p2) > h1(x, y, p1, p2). A symmetric argument establishes a similar statement

with “>” replaced by “<”. This establishes our desired result.

5 Estimation

Here we outline estimation procedures from a random sample of the observed variables that

are motivated by our identification results. We will first describe an estimation procedure

for the parameter E[Y1] in the first three examples. Let Px to denote the support of P (Z)

given X = x, fp(.|x) denote the density of P (Z) given X = x, and

P c
x = {p: fp(p|x) > c} for a known c > 0,

and for simplicity assume a strong overlap condition that

1− c0 > P (Z) > c0 for a known c0 > 0,
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Define a measure of distance between h1(x1, ·) and h0(x0, ·)

‖h1(x1, ·)− h0(x0, ·)‖

=

{∫ ∫ ∫ (∫ p2

p1

(Fg|u(y; v(x1, 1))− Fg|u(y; v(x0, 0))du

)2

I (p1, p2 ∈ P c
x)w(y)dydp1dp2

}1/2

where w(y) is a chosen weight function. Consider the case when h1(x, y, p1, p2), h1(x, y, p1, p2)

and P (z) are known. For any given Xi, let X̃i be such that∥∥∥h1(Xi, ·)− h0(X̃i, ·)
∥∥∥ = 0

which, under Assumption A-4 in Section 2, is equivalent to

v(Xi, 1) = v(X̃i, 0).

Define

Ŷi = E(Y |D = 0, ‖h1(Xi, ·)− h0(X, ·)‖ = 0, P = Pi).

Note that the conditional expectation on the right-hand side is equal to

E[Y |D = 0, v(X, 0) = v(Xi, 1), P = Pi], which in turn equals E[Y1|D = 0, X = Xi, P = Pi].

Then, following the discussion above, we define the following estimator for ∆ ≡ E[Y1]:

∆̂ =
1

n

n∑
i=1

(
DiYi + (1−Di)Ŷi

)
or a weighted version

∆̂w =

1
n

∑n
i=1 1 {Xi ∈ A}

(
DiYi + (1−Di)Ŷi

)
1
n

∑n
i=1 1 {Xi ∈ A}

Limiting distribution theory for each of these estimators follows from identical arguments in

Vytlacil and Yildiz (2007). Here we formally state the theorem for the first estimator:

Theorem 5.1 Under Assumptions A-1 to A-5, and the additional assumption that Y1 has

positive and finite second moment, then we have

√
n(∆̂−∆)

d→ N(0, V )

where

V = V ar(E[Y1|X,P,D]) + E[PV ar(Y1|X,P,D = 1)]

13



Now we describe an estimation procedure for the distributional treatment effect in Ex-

ample 4, where we had a model with random coefficients. In this case, the parameter of

interest is for a chosen value of the scalar y,

∆2(y) = Pr{Y1 ≤ y}.

First, for fixed values of y and p1 > p2, we propose to estimate t(x, y) as

t̂(x, y, p1, p2) = arg min
t

(h1(x, y, p1, p2)− h0(x, t, p1, p2))2

and then average over values of p1, p2:

τ̂(x, y) =
1

n(n− 1)

∑
i 6=j

I[Pi > Pj]t̂(x, y, Pi, Pj)

An infeasible estimator for the parameter ∆2(y), which assumes t(x, y) is known, would be

∆̂2(y) =
1

n

n∑
i=1

(Di1{Yi ≤ y}+ (1−Di)1{Yi ≤ t(Xi, y)}) .

In practice, for feasible estimation, one needs to replace t(x, y) by its estimator τ̂(x, y).

6 Simulation Study

This section presents simulation evidence for the performance of the proposed estimation

procedures described in Section 5, for both the Average Treatment Effect and the Distri-

butional Treatment Effect. We report results for both our proposed estimator and that in

Vytlacil and Yildiz (2007), for several designs. These include designs where the said mono-

tonicity condition fails, and designs where the disturbance terms in the outcome equation

are multidimensional.

Throughout all designs we model the treatment or dummy endogenous variable as

D = I[Z − U > 0]

where Z,U are independent standard normal. We experiment with the following designs for

the outcome

Design 1

Y = X + 0.5 ·D + ε

where X is standard normal, (ε, U) are distributed bivariate normal, each with mean

0 and variance 1, with correlations of 0,0.25,0.5.
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Design 2

Y = X + 0.5 ·D + (X +D) · ε

where X is distributed standard normal, (ε, U) are distributed bivariate normal, each

with mean 0 and variance 1, with correlations of 0,0.25,0.5.

Design 3

Y = (X + 0.5 ·D + ε)2

where X is distributed standard normal, (ε, U) are distributed bivariate normal, each

with mean 0 and variance 1, with correlations of 0,0.25,0.5.

We note that the monotonicity condition is satisfied in design 1 but fails in the other

two designs. For each of these designs, we report results for estimating the parameter

E[Y1], which denotes the expected value for potential outcome under treatment D = 1.

The two estimators used in the simulation study were the one proposed in Section 5 and

the method proposed in Vytlacil and Yildiz (2007). The summary statistics, scaled by the

true parameter value, Mean Bias, Median Bias, Root Mean Squared Error, (RMSE), and

Median Absolute Deviation (MAD) were evaluated for sample sizes of 100, 200, 400 for 401

replications. Results for each of these designs are reported in Tables 1 to 3 respectively.

In implementing our procedure we assumed the propensity score function is known, and

conducted next stage estimation using a nonparametric kernel estimator with normal kernel

function, and a bandwidth of n−1/5. This rate reflects “undersmoothing” as there are two

regressors, the propensity score and the regressor X. For the estimator in Vytlacil and

Yildiz (2007), which involved the derivative of conditional expectation functions as well,

estimating these functions nonparametrically gave very unstable results so we report results

for an infeasible version of their estimator, assuming such functions, as well as the propensity

scores, are known.

To implement the second stage of our proposed procedure, in calculating the distance

‖h1(xi, ·) − h0(x0, ·)‖ we used an evenly space grid of values for y, and selected n/50 grid

points, with n denoting the sample size.

The results indicate the desirable properties of our proposed procedure, generally agreeing

with Theorem 5.1. In all designs our estimator has small values for bias and RMSE, with

the value of RMSE decreasing as the sample size grows. In contrast, the procedure based

on Vytlacil and Yildiz (2007) only performs well in Design 1, with values of bias and RMSE

comparable to those using our method. As in our procedure these values decrease with as
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the sample size grows, which is expected, as the monotonicity condition rely on is satisfied

in these designs. In this case, their approach has smaller standard errors largely due to the

relative simpler structure of the infeasible version, but their biases persist even when the

sample size increases.

For designs 2 and 3, where monotonicity is violated, the procedure proposed in Vytlacil

and Yildiz (2007) does not perform well. In design 2 in Table 2 both the bias and RMSE

are generally increasing with the sample size. Results for their estimator are better in design

3, but the bias hardly converges with the sample size and is much larger compared to our

estimator.

We also simulate data from a model with dummy endogenous variable and potential

outcomes determined by random coefficients. It is important to note that for this design, the

original matching idea in Vytlacil and Yildiz (2007) does not apply. This is because different

values of x lead to different distribution of the composite error ηd + x′εd. Our contribution

in Section 4 is to propose a new approach based on matching different values of outcome y,

rather than the regressors x. Based on the counterfactual framework discussed in Section

4, here the treatment variable D is modeled as the same way as the dummy endogenous

variable above. Similarly the regressor X is standard normal. For both Y0, Y1 the random

intercepts were modeled as constants (0 and 1, respectively) and the additive error terms

were each standard normal. For the random slopes, the means were 1 and 2 respectively,

and the additive error terms were also standard normal, independent of all other disturbance

terms and each other. Here we use the procedure in Section 4 to estimate the parameter

∆2 = P (Y1 < y), where in the simulation we set y = 1. The same four summary statistics

are reported for sample sizes 100,200,400, based on 401 replications. Results for this random

coefficients design are reported in Table 4.

The estimator proposed in Section 5 performs well; but the bias and RMSE are much

small at 400 observations compared to 100 and 200 observations, indicating convergence at

the parametric rate.
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Table 1

CKT VY

ρv 0 1/4 1/2 0 1/4 1/2

n=100

MEAN BIAS -0.0170 0.0229 -0.0435 -0.1302 -0.1676 -0.2018

MEDIAN BIAS -0.0137 0.0124 -0.0653 -0.1318 -0.1678 -0.2087

RMSE 0.4936 0.4800 0.4945 0.3308 0.3337 0.3546

MAD 0.3289 0.3328 0.3156 0.2200 0.2271 0.2546

n=200

MEAN BIAS 0.0032 -0.0024 -0.0069 -0.0864 -0.1299 -0.1766

MEDIAN BIAS -0.0102 -0.0141 -0.0314 -0.0934 -0.1277 -0.1679

RMSE 0.3355 0.3367 0.3521 0.2293 0.2457 0.2711

MAD 0.2240 0.2228 0.2517 0.1594 0.1676 0.1865

n=400

MEAN BIAS -0.0187 0.0101 -0.0055 -0.0584 -0.11134 -0.1593

MEDIAN BIAS -0.0261 0.0128 -0.0065 -0.0592 -0.1162 -0.1572

RMSE 0.2496 0.2489 0.2578 0.2049 0.1867 0.2167

MAD 0.1523 0.1732 0.1659 0.1197 0.1345 0.1605

Table 2

CKT VY

ρv 0 1/4 1/2 0 1/4 1/2

n=100

MEAN BIAS 0.0109 0.0397 -0.0671 -0.1509 -0.2875 -0.4207

MEDIAN BIAS 0.0151 0.0227 -0.0939 -0.1590 -0.2918 -0.4262

RMSE 0.5089 0.2737 0.4853 0.3524 0.4199 0.5289

MAD 0.3395 0.2447 0.3105 0.2419 0.30898 0.4310

n=200

MEAN BIAS 0.0322 0.0143 -0.0311 -0.1273 -0.2559 -0.3875

MEDIAN BIAS 0.0159 0.0054 -0.0543 -0.1310 -0.2553 -0.3884

RMSE 0.3487 0.3444 0.3455 0.2622 0.3407 0.4475

MAD 0.2317 0.2297 0.2552 0.1782 0.2624 0.3884

n=400

MEAN BIAS 0.0088 0.0269 -0.0294 -0.0962 -0.2247 -0.3708

MEDIAN BIAS 0.0007 0.0244 -0.0309 -0.0982 -0.2255 -0.3769

RMSE 0.2578 0.2557 0.2549 0.1920 0.2764 0.4037

MAD 0.1649 0.1733 0.1606 0.1354 0.2283 0.3769

Table 3

CKT VY

ρv 0 1/4 1/2 0 1/4 1/2

n=100

MEAN BIAS -0.0097 -0.0070 0.0019 -0.0691 -0.0898 -0.1066

MEDIAN BIAS -0.0233 -0.0101 -0.0240 -0.0799 -0.0925 -0.1178

RMSE 0.1893 0.2085 0.2126 0.1546 0.1630 0.1701

MAD 0.1398 0.1342 0.1374 0.1125 0.1178 0.1315

n=200

MEAN BIAS -0.0108 -0.0069 -0.0068 -0.0609 -0.0765 -0.0968

MEDIAN BIAS -0.0148 -0.0033 -0.0099 -0.0674 -0.0769 -0.1017

RMSE 0.1372 0.1434 0.1424 0.1163 0.1262 0.1369

MAD 0.0949 0.0989 0.0953 0.0855 0.0887 0.1078

n=400

MEAN BIAS -0.0073 -0.0014 -0.0026 -0.0583 -0.0725 -0.0889

MEDIAN BIAS -0.0149 -0.0023 -0.0029 -0.0610 -0.0751 -0.0887

RMSE 0.1084 0.0994 0.0989 0.0924 0.1007 0.1131

MAD 0.0697 0.0685 0.0654 0.0689 0.0788 0.0901
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Table 4

CKT

ρv 0 1/4 1/2

n=100

MEAN BIAS 0.0109 -0.0086 0.0038

MEDIAN BIAS 0.0000 -0.0064 0.0126

RMSE 0.1011 0.0979 0.0955

MAD 0.0600 0.0648 0.0652

n=200

MEAN BIAS -0.0050 -0.0150 0.0095

MEDIAN BIAS -0.0100 -0.0161 0.0029

RMSE 0.0669 0.0669 0.0665

MAD 0.0400 0.0454 0.0457

n=400

MEAN BIAS 0.0012 -0.0132 0.0074

MEDIAN BIAS 0.0049 -0.0162 0.0077

RMSE 0.0501 0.0494 0.0495

MAD 0.0349 0.0325 0.0360

7 Conclusion

In this paper, we considered identification and estimation of nonseparable models with en-

dogenous binary treatment. Existing approaches are based on a monotonicity condition,

which is violated in models with multiple unobserved idiosyncratic shocks. Such models

arise in many important empirical settings, including Roy models and multinomial choice

models with dummy endogenous variables, as well as treatment effect models with random

coefficients. We establish novel identification results for these models which are construc-

tive and conducive to estimation procedures which are easy to compute and whose limiting

distributional properties follow from standard large sample theorems. A simulation study

indicates adequate finite sample performance of our proposed methods.

This paper leaves open areas for future research. Our method requires the selection of the

number and location of cutoff points, so a data driven method for selecting these would be

useful. Furthermore, the relative efficiency of our proposed approach needs to be explored,

perhaps by deriving efficiency bounds for these new classes of models.
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