

Boston College
Computer Science Department

Senior Thesis 2002
Christopher Fagiani

An Evaluation of Tracking Methods for Human-Computer Interaction
Prof. James Gips

 2

Evaluation of Tracking Methods for Human-Computer Interaction

Christopher Fagiani
Computer Science Department

Boston College
Fulton Hall

Chestnut Hill, MA 02467

Abstract

Tracking methods are evaluated in a real-time
feature tracking system used for human-
computer interaction (HCI). The Camera Mouse,
a HCI system that uses video input to manipulate
the mouse cursor, was used as the test platform
for this study. The Camera Mouse was developed
to assist individuals with severe disabilities in
using computers, but the technology may be used
as a method for HCI for those without
disabilities as well. The initial location of the
feature to be tracked is set manually by the user
by clicking on a portion of the image window
and the system tracks its location in subsequent
frames. Tracking methods were evaluated in
terms of the best combination of computational
efficiency and accuracy. Trackers evaluated
include feature matching using normalized
correlation coefficients and optical flow, in the
form of a Lucas-Kanade tracker. Each tracking
algorithm is evaluated both with and without the
addition of Kalman Filters. The effects of 2-D (x
and y location) 4-D(location and velocity in the x
and y directions), and 6-D (location, velocity,
and acceleration in the x and y directions) are
examined and analyzed. The normalized
correlation coefficient tracker, without Kalman
Filtering, was found to be the best tracker in
terms of suitability to the human-computer
interaction system implemented.

1 Introduction

The current human-computer interaction
paradigm, based around the keyboard and
mouse, has seen little change since the advent of
modern computing. Since many desktop and
laptop computers now come with cameras as
standard equipment, it is desirable to employ
them for next -generation human-computer
interaction devices. By relying on visual input
rather than tactile input, users are free to use
their hands for other tasks while interacting with
their computers, ultimately enabling software

designers to develop new models of user
interaction.

Systems that interpret visual data have become
more prevalent as computer capabilities have
expanded. In order to more effectively utilize the
power available in standard desktop computers
and to expand the range of devices that utilize
computer vision techniques, algorithms must be
developed that lessen the load on the processor
without sacrificing robustness or accuracy. If
successful, this will enable applications, such as
a camera-based pointing device, to be efficient
enough to have only a negligible impact on
computer system performance. Such advances
would open the door for more intelligent human-
computer interfaces, allowing users to move far
beyond what is possible with the standard
keyboard and mouse combination. The
foundation for any such system must be laid with
efficiency in mind. Useful applications of vision
systems are few if the vision processing takes up
the majority of system resources. This being
said, it follows that a robust vision system must
be quick, accurate and use a reasonable amount
of processing power.

Such interfaces also have especially relevant
applications for people who cannot use the
keyboard or mouse due to severe disabilities.
The traditional human-computer interfaces
require good manual dexterity and refined motor
control. Users with certain disabilities, however,
may lack these abilities. The primary goal of this
research project is to refine tracking methods
currently in use in such an application as to
provide a version of the system with less
overhead, thereby expanding the range of uses to
which it may be applied. As tracking accuracy
increases, the amount of user intervention
required for system setup and initialization will
decrease. This will move human-computer
interface technology closer to the possibility of
operating without the use of one’s hands at all.

The real-time feature tracking system to be used
as the testing platform for this experiment is the

 3

Camera Mouse [1,2,21], a system developed at
Boston College that uses video input to control
the mouse cursor. Upon start-up, a feature is
selected for tracking by clicking on it in the
vision window. The system then tracks that
feature in real time, moving the mouse cursor
accordingly.

The purpose of introducing the Kalman Filter
[19] is to reduce the amount of processor time
needed by the tracking application, thereby
allowing for third-party applications to have a
greater share of CPU time. The Kalman Filter
was applied in two distinct ways: estimating the
feature location in every frame and in every
other frame. Using the filter every frame allowed
for a smaller search area for the tracking
algorithm whereas, when using the Kalman filter
every other frame, the Kalman estimate was used
instead of running the tracking algorithm on that
frame. Both methods significantly reduce the
CPU time needed by the system, but the scheme
in which the Kalman filter is used in every frame
is more efficient in terms of CPU load. It is
anticipated that tracking systems that are less
taxing upon CPUs will eventually enable vision-
based tracking systems to be installed in a wide
variety of technology, from intelligent vehicles,
to almost any other application where head
tracking and feature analysis is required.

This paper describes the algorithms and
computer vision techniques used to refine a real
time feature tracking system in terms of demand
on the CPU in such a manner that does not
significantly impact tracking accuracy.

Among the methods presented, one employs
visual information about the motion of a feature
in conjunction with the mathematics of the
Kalman Filter to alternately measure and
estimate the location of the feature. This method
did reduce CPU load, but the reduction in
tracking accuracy is prohibitive to using this
approach.

The normalized correlation coefficient tracking
without any Kalman Filters proved to be the
most accurate algorithm. This method, in
addition to being fairly accurate, was slightly
more demanding on the CPU than the next -best
method, the Lucas-Kanade (LK) tracker [18].

Utilizing the normalized correlation coefficient
tracker on a smaller search area while using the
Kalman filter to estimate feature position every

frame proved to be the least CPU intensive
method tested. While this was not as accurate as
the normalized correlation method without
Kalman filters, the processing time was
considerably less.

Since computers double in power approximately
every eighteen months [17], tracking accuracy
was deemed more important than computational
efficiency for this application. With this in mind,
the normalized correlation coefficient is the
tracking method best-suited to this computer
vision system.

1.1 Previous Work

Within the field of computer vision, there is a
proliferation of different tracking algorithms
[6,7,9]. Many are variations upon a common
theme [3,5]. Optical flow [4,5,6,7,15], inertial
tracking [11], the Condensation algorithm and
probabilistic systems [9] have all been used to
address the problem of identifying and following
movement in visual systems. While, in general, it
is possible to regard any algorithm for the
computation of the optical flow as a solution to
the tracking problem [4], the Lucas-Kanade
tracking method addressed the feature tracking
problem through the utilization of optical flow to
detect motion [14, 5]. The LK method utilized a
process of factorization to interpret the image
data. Similarly, Kalman Filtering [19] has been
applied to many of these techniques [7,9,11] in
an attempt to smooth out noise and reduce
feature drift [7, 13].

In this paper, a system, which processes real-
time image data consistently at approximately
27-29 frames per second is presented. Since the
intended use of this system is as a driver for a
pointing device, drift of the actual feature being
tracked is not relevant, so long as the direction
and magnitude of the motion can still be
accurately measured. Therefore, minimizing
drift, as described in Rahimi et al. [13] is not as
appropriate to this application as other types of
feature trackers. Even if the feature being tracked
drifts to an entirely different region of the face,
the system will generally still perform as desired.
It is only if drift becomes so pronounced that the
feature drifts from the object being tracked to the
background that it is detrimental to system
performance to the point where it is unusable.

 4

Though still usable with large amounts of drift,
methods that have minimal drift are still
preferred since the Camera Mouse system
becomes much harder to use as the tracked
region drifts farther and farther from the true
location.

The Camera Mouse system, as described in
[1,2,21], has been modified to run on one
computer and one program that integrates the
functionality of both the driver and the vision
tracker. This implementation of the Camera
Mouse system requires less hardware than that
described in [1,2,21] since the end-users no
longer need the digital acquisition board nor the

external switch used for alternating between the
Camera Mouse and the traditional mouse.

2. System Overview

The system may be broken down into two or
four steps, depending on whether or not Kalman
Filtering is being employed. If the filters are
used, after initialization, the program is in a
“training” step in which the error covariance
matrix is initialized [12]. After training the error
covariance matrix, the feature position is tracked

Figure 2.1 The system may be run in one of two branches: Kalman mode and tracking without Kalman Filters. Both modes make use
of either the normalized correlation coefficient or the LK tracker, depending on what is selected at start up.

using the chosen tracking algorithm on even
frame numbers and estimated using the Kalman
Filter on odd frames. After each frame the
Kalman filter equation is updated in order to
refine its estimate of the position.

When Kalman filtering is not being used, the
feature is tracked using only the selected tracking
algorithm.

 5

2.1 Normalized Correlation Tracking

The normalized correlation coefficient tracking
method computes the correlation coefficient for
each point a search area that is centered around
the position of the feature in the previous frame
[See Equation 2.1.1].

(Eq 2.1.1)
 n n n
 n Σ xiyi - Σxi Σyi
 i=0 i=0 i=0

R(x,y) = __

 n n n n
 √ (n Σxi

2 –(Σxi)2) √ (n Σyi
2 –(Σyi)2)

 i=0 i=0 i=0 i=0

where n Σ xiyi - Σxi Σyi is the covariance of the average
brightness values of the pixels in the search area, (n Σxi

2 –(
Σxi)2) is the standard deviation of the average pixel
brightness values in the x direction, and (n Σyi

2 –(Σyi)2) is
the standard deviation of the average brightness values in the
y direction, and n is the value for the height and width of the
feature.

The normalized correlation tracker predicts the
location of the feature in the current frame based
on the point in the search area that yields a
correlation coefficient which best matches the
correlation coefficient calculated in the previous
frame. Since the tracking is based on search
results obtained in the previous frame, this
searching algorithm may classified as a recursive
filtering method. The search space for equation
2.1.1 is fixed therefore the variance of the
correlation estimate is also considered to be
fixed.

The search area utilized for this paper was 25
pixels in each direction from the center of the
feature (a 50x50 pixel search area). The size of
the feature being tracked was 15x15 pixels.

The correlation coefficient acts as a metric for
measuring the degree to which a region of the
current image matches the corresponding region
in the previous frame. This method allows the
feature location to be updated at a rate of
approximately 30 times per second.

The algorithm operates by calculating the
normalized correlation coefficient for every point
in the search area, which is centered around the
feature’s location in the previous frame. The
point with the highest correlation is declared to

be the new location of the feature. If no point in
the search area has a correlation coefficient
above a certain threshold, the feature is declared
to be “lost” and the system should be re-
initialized.

2.2 Lucas -Kanade Tracking

The LK [14, 18] tracker is based upon the
principle of optical flow and motion fields [3, 4,
15]. It allows for recovery of motion without
assuming a model of motion [14]. The
implementation used was that of the Intel
OpenCV library.

While the OpenCV implementation of the LK
algorithm allows one to track multiple points
simultaneously, only one point was tracked in
this study. Tracking more than one feature may
have improved the LK tracker’s performance,
but such a method was not implemented in this
system.

Optical flow is defined as an apparent flow of
image brightness. Calculations of optical flow
assume that if I(x,y,t) is the brightness of pixel
x,y at time t, then the brightness of every point in
the image does not change in time. This is not to
say that pixels at the same location in an image
sequence must be the same brightness, but rather
that the same feature always appears with the
same brightness, no matter where in the image it
appears.

If the displacement of a pixel from one image
frame to another is defined as (dx,dy) then, via
the constant brightness assumption, we may state
that:

(Eq. 2.2.1)

I(x+dx,y+dy,t+dt) = I(x,y,t)

Where dt is defined as the difference in time between the new
image and the old image.

and:

(Eq 2.2.2)

∂I/∂x dx + ∂I/∂y dy + ∂I/∂t dt + Ë = 0

 6

If u is defined as dx/dt and v is defined as dy/dt,
then one may derive the optical flow constraint
equation:

(Eq 2.2.3)

- ∂I/∂t = ∂I/∂x u +∂I/∂y v

Feature position estimate is carried out by
computing the minimum of the sum of squared
differences in pixel brightness values within a
given window. Using partial derivatives to
minimize the sum of squared errors yields:

(Eq. 2.2.4)

Σ W(x,y)Ix

2 u +Σ W(x,y)IxIy v = - Σ W(x,y)ItIx
 x,y x,y x,y

and:

(Eq. 2.2.5)

Σ W(x,y)IxIy u + Σ W(x,y)Iy

2 v = - Σ W(x,y)ItIy
 x,y x,y x,y

Where W(x,y) represents the Gaussian window over which
the Lucas-Kanade filter computes the optical flow.

The point generated via equation 2.2.5 is that
which minimizes the error in brightness values
between the feature in frame t-1 and in frame t.
Pixels are grouped according to a window size
parameter. In the case of equations 2.2.4 and
2.2.5, the width and height of the window is
defined by W(x,y) and x and y represent the
coordinates of pixels over which we sum.

2.3 Kalman Mode

The Kalman Filter operates through the repeated
updates to the matrices that describe the system.
Upon initialization, all that is necessary is the
proper specification of the state vector, the
observation matrix, transition matrix, dynamics
model, and measurement covariance matrix [16].
The time update equations project the current
state estimate ahead in time and the measurement
update adjusts the projected estimate by an actual
measurement that is obtained through the use of,
in this system, either the LK tracker or the
normalized correlation coefficient tracker.

The Kalman Filter, as implemented in the Intel
OpenCV library, produces its estimates through

the use of a feedback control: the filter first
estimates the system state at some time which it
then updates using feedback in the form of
measurements. These measurements, however,
are subject to process and measurement noise
and they must be adjusted accordingly. Because
of the noise, the Kalman Filter time-update
equations must use an error covariance matrix
when projecting the state forward. Similarly, the
measurement update equations must update the
approximations of the covariance matrix to
increase the probability that the system will
generate an improved a posteriori estimate.

The Kalman Filter measurement is of the form:

(Eq 2.3.1)

zk = Hk+ vk

Where vk is a random variable representing measurement
noise and H is a matrix which relates the state to the
measurement.

The step in which the Kalman Filter is used to
estimate the feature location utilizes the Kalman
time update equations:

(Eq. 2.3.2)

X -
k+1 = Ακ Xk

Where X -

k+1 is the a priori state estimate at step k given
knowledge of the process prior to step k, Xk is the a
posteriori state estimate at step k given the measurement zk,
and Ak is a matrix which relates the state at time step k to the
state at step k+1.

(Eq 2.3.3)

P-
k+1 = AkPkAT

k+Qk

Where Ak is the same matrix as in Eq. 2.3.2, P-

k is the a priori
estimate error covariance, and Qk is the process noise
covariance.

On frames where the tracking algorithm is used
to find the feature location, the various matrices
that comprise the Kalman Filter are updated
using the Kalman Measurement Update
Equations:

(Eq. 2.3.4)

Kk = P-
kHT

k(Hk P-
kHT

k + Rk)-1

Where K is the Kalman gain matrix, Rk is the measurement
noise covariance and the other matrices are the same as in
equations 2.3.2 and 2.3.3.

 7

(Eq. 2.3.5)

Xk = X –
k + Kk(zk - Hk X –

k)

Where each term represents the same matrix as in above
equations.

(Eq. 2.3.6)

Pk = (I – KkHk) P –
k

Where each term represents the same matrix as in above
equations and I is the identity operator.

Kalman Filters of 3 different dimensions were
evaluated in this system. The filters considered
were of 2, 4 and 6 dimensions of motion. The
two degree filter considered the feature’s
horizontal and vertical position. The four
dimensional filter considered these values as
well as velocity in both the horizontal and
vertical direction. The six dimensional filter, in
addition to the dimensions tracked by the four
dimensional filter, considered acceleration in
both directions.

The system was designed to implement Kalman
Filters in two ways: with and without alternation.
Running the system with alternation means that
the system will use the Kalman Filter to estimate
feature position in odd frames and the tracking
algorithm on even frames. Operating without
alternation is only applicable to the normalized
correlation coefficient algorithm. When the
system is run in this mode, the Kalman Filter is
used on every frame to estimate the feature
position and then the normalized correlation
coefficient is used to search the area around the
predicted location.

At each iteration, the system approximates the
feature location by using equations 2.3.1 through
2.3.6. This method differs from the non-Kalman
correlation coefficient method in that the area
searched by the normalized correlation
coefficient is reduced by three quarters. This
translates to a three quarters reduction of the
number of times the system will have to compute
equation 2.1.1.

When operating in Kalman Mode with
alternation, the system has three distinct steps.
First, the error covariance matrix is
approximated using training data [12]. This was
achieved by calculating the covariance of the
true feature location and the location predicted

by the tracking method (either LK or normalized
correlation coefficient) for a given number of
frames on a saved input sequence. The true
feature locations in this sequence were hand-
marked. This allowed for an approximation of
the measurement noise covariance encountered
by the system.

Once the covariance matrix has been trained, the
system tracks the feature using the selected
tracking algorithm on even frames using
equations 2.3.4 through 2.3.6, and estimates the
feature location via the Kalman Filter’s a
posteriori state matrix on the odd frames using
the state matrix resulting after the application of
equations 2.3.2 and 2.3.3.

The Kalman Filter’s state matrix represents the
filter’s perception of the system state at time t.
For the 2-D case, the state matrix reduces to a
vector containing the x and y location of the
feature. In the 4-dimensional case, the state
matrix contains the location and velocity. The 6-
dimensional case populates the state matrix with
the feature location, velocity and acceleration.
The measurement matrix differs from the state
matrix in that the system sets it during the non-
Kalman frames via the results of applying the
chosen tracking algorithm.

When switching from using a 2 dimensional
filter to a 4 or 6-D filter, the number of
parameters remain the same, but the size of the
matrices change. When performing the update,
however, one still needs only to update the
position of the feature since, according to
Kohler, this is the only one, of the three
components being measured, that can be directly
measured from the video input [10]. Values for
acceleration and velocity could be calculated
using the position of the feature through a series
of frames, but the Kalman filter will calculate
these values as needed through the components
of the state matrix.

2.4 Motion Translation and Mouse
Movement

After the feature location is determined, the
movement relative to the previous frame is
calculated. This measurement is used to
determine how far and in what direction the
mouse cursor should be moved on the screen.

 8

{

{

The movement of the feature within the image
window is translated to screen coordinates
through a function that takes into account the
screen resolution, the size of the image being
analyzed and the apparent motion of the feature
(See Equations 2.4.1 and 2.4.2). Before
translating image plane coordinates to screen
coordinates, the image window is first reduced
so that only the interior three quarters of the
image is considered (i.e. the edge of the image
window does not correspond to the edge of the
screen).

(Eq 2.4.1)

 ((0.5 dx - px,i)mx)
 ______________ + 0.5 mx if dx /4<px,I<3dx/4
 0.5 dx
cx=

 0 if px,I < dx/4
 1 if px,I > 3dx/4

Where dx is the width of the image (in pixels), mx is the width
of the monitor (in pixels), and px,i is the x coordinate of the
predicated feature location in frame i. The image is mirrored
in the horizontal direction to make it easier for users to
coordinate head movement with screen movement, therefore
0.5dx-px,I in the above equation is negative when the feature
moves to the user’s right.

(Eq 2.4.2)

 ((0.5 dy – py,i)my)
 ______________ + 0.5 my if dy /4<py,I<3dy/4
 0.5 dy
cy=

 0 if py,I < dy/4
 1 if py,I > 3dy/4

Where dy is the height of the image (in pixels), my is the
height of the monitor (in pixels), and py,i is the y coordinate
of the predicated feature location in frame i.

Both of the above equations assume that the
monitor resolution has a 3:4 aspect ratio, the
same as is used for the input images.

This method of translation makes it easier for the
user to move the mouse to the edge of the screen
while also reducing the likelihood that the
tracker will lose sight of the image due to its
movement out of the camera’s field of view.

3. Hardware

Input was gathered using a Matrox Meteor II
video capture board in conjunction with a Sony

EVI-D30 color video CCD camera. Video input
was also gathered with a Sony Handycam Hi-8
video camera. The system used for development
and testing was a dual 1GHz Pentium III
machine with 256 MB of PC-133 SDRAM.
Grayscale and color images were processed at
320x240 pixels.

4. Experiments

Experiments were conducted on different series
of images representing different ranges of
movement. Input images were gathered with the
subject moving his head randomly as well as
while using a mouse-based spelling program,
Midas Touch [See Figure 4.1]. All video data
was gathered under normal laboratory lighting
(florescent bulbs); no special lights were used.

The subject was asked to make random or erratic
movements for some input sequences to simulate
the types of movements encountered with users
with severe disabilities such as Cerebral Palsy.
Such users often have difficulty moving the
mouse pointer from one point to another in a
straight line with constant speed. Because it is
primarily people with disabilities who use the
Camera Mouse system, the evaluation of
tracking methods needed to account for both
smooth and more erratic movement.

Feature selection was performed in such a
manner to maximize the likelihood that the
system would be able to differentiate the feature
from its surrounding area. Areas with significant
contrasts in color or texture, such as the eyebrow
or nostril, provide regions with sharp edges that
facilitate accurate tracking [8]. The edges of
these features provide the best regions to track
since they usually differ significantly in color
from the flesh surrounding them. Features
tracked in this study include the edge of the
eyebrow closest to the nose, the corner of the
nostril, and the bridge of the subject’s
eyeglasses.

4.1 Quantitative Experiments

Three different input sequences were captured
using 3 different people. In one sequence, the
subject was asked to make random head

 9

movements and in the other two, the subject used
the system to control the Midas Touch spelling
application.

Figure 4.1 The Midas Touch spelling application. Users
spell words by moving the mouse cursor over a character and
then dwelling within a small radius of pixels for a second to
generate a mouse click. Subjects were asked to spell the word
“hello” during trials.

When using the Midas Touch spelling program,
the subjects were instructed to spell the word
“Hello.” The subjects did not make any
movements that were not associated with
performing this task (i.e. subjects did not look
away from the screen during input capture),
except in the case of the sequence with random
movement where the subject was asked to move
his head in any direction he wished. The subjects
were positioned approximately two feet from the
camera and they remained at this distance for the
duration of the input sequences.

Evaluation of algorithms was performed in terms
of accuracy of the tracking. Accuracy was
measured by comparing Pd,i, a vector
representing the distance (in pixels) the mouse
cursor should have moved (assuming perfect
tracking) in the ith frame, and, Pt,i , a vector
representing the distance the mouse cursor was
actually moved in the ith frame [See Equation
4.1]. The mean of the Euclidean distance
between these two points over all frames in the
input sequence was taken as a single value to
quantify tracker performance relative to one
another.

 (Eq. 4.1)

mean error =

Where n is the length of the image sequence (in frames), Pd,i
is the number of pixels the tracker predicted the cursor
should have been moved in the ith frame, and P t,i is the true
number of pixels the mouse cursor should have moved in the
ith frame.

This method of evaluation, as opposed to
measuring the location of the feature, does not
penalize the system for errors made at the
beginning of the trial more than those made near
the end. The error calculation takes only the
change in mouse coordinates from the previous
frame to the current frame into account, not the
absolute error encountered since the start of the
tracking. In this sense, the error is non-
cumulative. Similarly, as long as the motion
being tracked is in the same direction and
magnitude as the actual motion, the tracker is
evaluated favorably.

Other evaluations of feature trackers have
employed an error metric that measures the drift
in feature position from the ground-truth feature
position [20]. This evaluation method, while
well-suited to systems solely concerned with
feature tracking, is less relevant to the Camera
Mouse application. The Camera Mouse system
does not need to track the same feature to operate
properly. The movement of the mouse cursor
will remain true to the user’s wishes as long as
the direction and magnitude of feature motion
can still be measured. This distinction makes the
effects of drift less significant; therefore the
evaluation method must take this into account.

Input image sequences were pre-captured at a
rate of 30 frames per second and hand-evaluated.
In each series, a feature was selected and the
location of that feature in each frame was
recorded. Each image in the input sequence was
opened in Paint Shop Pro and the location, in
pixels, of the center of the chosen feature was
noted in a text file. This information was later
used by the system to determine the error for the
measurement in a given frame. A subset of this
data was also used to train the error covariance
matrix for the Kalman Filters. Approximately 10
seconds of input was hand-classified (300
frames).

Since the establishing of the “true” feature
location in every frame was performed by hand,
it is subject to some degree of human error.
Though the utmost care was taken to select the
exact location of the center of the feature in
every frame, some error (on the order of 1 or 2
pixels) may have occurred.

||)PP(||1 2
it,

1

0
id, −∑

−

=

n

in

 10

4.2 Qualitative Experiments

Input data of a much longer duration than the
hand-classified sequences was recorded on
videotape. Video was recorded while the subject
used the system to control a number of
applications including Midas Touch, Eagle
Aliens, Speech Staggered, and Eagle Paint [See
Figure 4.2]. Nine minutes of video input was
captured in this manner.

Figure 4.2 The applications used during video capture.
From top to bottom: Eagle Aliens, Eagle Paint, and Speech
Staggered.

The four different programs were selected
because of the different types of movement each
requires. Mouse movement while using Eagle
Aliens is characterized by sudden changes in
direction (as the user is trying to hit aliens that
appear in random locations). Erratic, seemingly
random movements characterize mouse
movement associated with Eagle Paint since the
user is able to “paint” by moving the mouse
cursor anywhere in the application window. The
movement during this application may be slow
and deliberate or fast and wild. The two spelling
programs, Midas Touch and Speech Staggered
are similar in that both require the user to move
the mouse over a desired character or group,
respectively, and hold the cursor in the same
region for a period of time to generate a mouse
click.

Evaluation of each tracker on the videotaped data
was carried out by hand. If the tracker lost the
feature, it was reinitialized. The number of times
the operator needed to manually reset the tracker
for each tracking method on each input sequence
and the amount of drift was recorded. Drift was
measured in terms of the degree to which the
tracked region deviated from the position to
which it was initialized. Due to the length of the
input sequences (over 16,200 frames) the true
feature location was not recorded for every
frame. The drift was estimated through
observation of the movement of the tracked
region in the video image.

5. Results and Discussion

Qualitatively, the LK tracker without Kalman
Filtering and the normalized correlation
coefficient tracker performed with similar levels
of reliability. Both were accurate enough to
allow the user to manipulate the mouse cursor as
desired. While the tracking did drift, motion was
conserved and therefore it had no apparent effect
on the tracking [See Figure 5.1]. When the user
moved, the region tracked by the system moved
approximately the same distance and in the same
direction as the true feature.

 11

Figure 5.1 In this image sequence, the LK tracker was used
without Kalman Filters. The region containing the tracked
feature is blown up in each image to make it easier to see.
The lighter square denotes the ideal feature location whereas
the darker square denotes the location returned by the
tracking algorithm. The area tracked in this sequence is the
left side of the bridge of the glasses.

Features tracked were deemed suitable for
tracking if they were easily differentiable from
their immediate surroundings. This quality may
be observed by examining the correlation
coefficients observed when a template is
compared with itself [See Figure 5.2]. Even
when the template is only a small number of
pixels away from the exact position, the
correlation coefficient is seen to be significantly
less than 1, the value for a perfect match.

For methods that utilized the Kalman Filter, both
the measurement and process noise covariance
matrices changed little during training. The
process noise matrix, was assumed to be zero for
this study. The measurement noise matrix
remained fairly stable, with covariance values on
the order of 1 and 2 pixels.

The features chosen for this study include the
corner of an eyebrow, a nostril, and the bridge of
the subject’s glasses. All three of these exhibit
the above quality, though, of the features used,
the eyebrow was the most easily differentiated
from itself whereas the glasses template was
slightly harder to differentiate from itself. Since
all features used in this study exhibited this
quality, the choice of the feature itself was
deemed to have a negligible impact on the
results. Had the features been harder to

differentiate from themselves, it is likely that the
error rates for each of the tracking methods
tested would have been greater.

Figure 5.2 A three-dimensional plot of the correlation
coefficient values obtained when trying to match a template
consisting of the corner of the subject’s eyebrow with itself.
The peak in the graph represents the location at which an
exact match is obtained.

5.1 Results from Q uantitative Experiments

When tracking with the normalized correlation
coefficient and Kalman filtering (without
alternation), the tracking was accurate while the
feature movement was relatively slow. Sudden
movements, in which the feature moved out of
the search area, caused significant drift but did
not result in a complete loss of tracking. This is
significant since a total loss of the feature would
require user intervention to re-initialize the
tracker.

Type of
Kalman
Filter

Correlation
Coefficient

Lucas-
Kanade
Tracker

No Kalman
Filtering

CorrNoKalman LKNoKalman

Kalman
Filtering
without

Alternation

2DCorrNoAlt
4DCorrNoAlt
6DCorrNoAlt

2DLKNoAlt
4DLKNoAlt
6DLKNoAlt

Kalman
Filtering with
Alternation

2DCorrAlt
4DCorrAlt
6DCorrAlt

2DLKAlt
4DLKAlt
6DLKAlt

Figure 5.3: A summary of the abbreviations used to denote
each tracking combination in the subsequent charts in this
section. The prefixes 2D, 4D and 6D refer to the dimension
of the Kalman Filter being applied.

 12

In terms of processing time, the normalized
correlation coefficient tracker with no Kalman
Filters was the most demanding. The least
demanding was the normalized correlation
coefficient with a 4 dimensional Kalman Filter
[See Figure 5.4]. Despite the large time required
for the normalized correlation tracker, the system
was still able to operate at approximately 30
frames per second. Since the increase in
computing time still allowed for the processing
of real-time data, the cost was deemed
acceptable for this type of system.

Mean Time per Frame

0

2

4

6

8

10

12

Ti
m

e
(m

s)

2DCorrALt

2DCorrNoAlt

2DLKALT

LKNOALT

4DCorrALT

4DCorrNOALT

4DLKAlt

6DCorrALT

6DCorrNoAlt

6DLkAlt

CorrNOKALMAN

Figure 5.4 The mean time, in milliseconds, needed to process
a frame of data using every possible combination of trackers
and Kalman Filters implemented in the system.

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20

Mean Error

M
ea

n
Ti

m
e

pe
r F

ra
m

e

A

B C D

 Figure 5.5 Plot of mean tracker error versus computation
time. Point A represents a group of trackers consisting of
2DCorrNoAlt, 4DCorrNoAlt, 6DCorrNoAlt. Point B
represents the normalized correlation coefficient tracker with
no Kalman Filtering and the LK tracker with no Kalman
Filtering. Point C represents a group of trackers consisting of
2DCorrAlt, 4DCorrAlt, and 6DCorrAlt. Point D represents
the performance of the 2DLKAlt, 4DLKAlt and 6DLKAlt
trackers. The best balance between time and accuracy is
yielded by the normalized correlation tracker with no Kalman
Filtering.

In addition to the differing levels of demand
placed upon the CPU, each algorithm performed
with a differing degree of accuracy. In some
cases, as expected, a decrease in computation
time was accompanied by a decrease in

accuracy, as when applying Kalman Filtering
with alternation to the normalized correlation
coefficient tracker. This, however, was not
always the case. Though the normalized
correlation coefficient tracker used more time to
locate the feature than the LK tracker, it was still
deemed to be the best suited for this application
since it produced a smaller error. This being said,
the tracker with the best balance between time
and accuracy was the normalized correlation
coefficient tracker without Kalman Filtering [See
Figure 5.5].

Though the graph in Figure 5.5 shows that the
normalized correlation tracker with a 2D Kalman
Filter and no alternation performed with
approximately the same mean error and a smaller
time requirement, that method was not
determined to be optimal because of its
propensity to drift when the user makes sudden
movements. When examined on data in which
the subject exhibited random movement, the
normalized correlation tracker, when combined
with Kalman Filtering, performed with a much
higher error than the version without Kalman
Filtering [See Figure 5.6].

Mean Error Over 300 Frames of Subject
with Random Movement

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
 E

rr
or

2DCorrALt

2DCorrNoAlt

2DLKALT

LKNOALT

4DCorrALT

4DCorrNOALT

4DLKAlt

6DCorrALT

6DCorrNoAlt

6DLkAlt

CorrNOKALMAN

Mean Error over 300 Frames

0

2

4

6

8

10

12

14

16

18

20

M
ea

n
Er

ro
r

2DCorrALt

2DCorrNoAlt

2DLKALT

LKNOALT

4DCorrALT

4DCorrNOALT

4DLKAlt

6DCorrALT

6DCorrNoAlt

6DLkAlt

CorrNOKALMAN

Figure 5.6 Mean error for each tracking method for input
with random movement (top) and input in which the subject
used the Camera Mouse to control computer applications
(bottom). Though the normalized correlation tracker with and

 13

without Kalman Filtering performed similarly on some input,
the version without Kalman Filtering worked better on erratic
movement. Mean feature velocity in sequence with random
movement was 110.2 pixels per frame and the mean velocity
in the bottom sequence was 55.8 pixels per frame. Each entry
in the graph represents the same tracking method as in Figure
5.3.

On the image series in which the subject was
using the Camera Mouse to manipulate the
mouse cursor in a third-party application, the
normalized correlation coefficient tracker
performed with the highest level of accuracy
[See Figures 5.7 and 5.8]. Though some drift
was observed, the motion recorded was
consistent with the movement of the feature and,
therefore, the system performed as desired.

Ideal vs. Actual Mouse Movement on X-
axis for Normalized Correlation without

Kalman Filtering

-50

-40

-30

-20
-10

0

10

20
30

40

50

1 19 37 55 73 91 10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

27
1

28
9

Frame

Po
si

tio
n

Ch
an

ge

`

Figure 5.7 The normalized correlation coefficient tracker
without Kalman filters performed the best of all tested
tracker/filter combinations. The dark line is the actual
number of pixels the mouse should have been moved and the
lighter line is the amount the system moved the mouse
pointer.

Ideal vs. Actual Mouse Movement on X-axis
for LK Tracker without Kalman Filtering

-50
-40

-30
-20
-10

0
10
20
30
40
50

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Frame

Po
si

tio
n

Ch
an

ge

Figure 5.8 The LK tracker without Kalman filters
performed the next best of all tested tracker/filter
combinations. The dark line is the actual number of pixels the
mouse should have been moved and the lighter line is the
amount the system moved the mouse pointer. One can see
that, though the two lines have a similar level of disparity as
those in figure 5.3, this tracking method has a higher mean

error due to the more frequent occurrence of large errors. One
such occasion may be seen around frame number 110 in this
figure.

With random movement, the normalized
correlation coefficient-based tracker performed
slightly better than the LK tracker and much
better than all the other combinations of tracking
and filters [See Figure 5.9]. While this behavior
is to be expected, based on the trackers’ relative
performances on the non-random movement, the
degree to which the normalized correlation
coefficient tracker outperformed the LK tracker
was more pronounced on the random data.

Ideal vs. Actual Mouse Movement on X
Axis for NCC Tracker with No Kalman

Filters

-150

-100

-50

0

50

100

150

200

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

Frame

Po
si

tio
n

Ch
na

ge

Ideal vs. Actual Mouse Movement on X
Axis for the LK Tracker with No Kalman

Filters

-150

-100

-50

0

50

100

150

200

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Frame

Po
si

tio
n

Ch
an

ge

Figure 5.9 Performance of the normalized correlation
coefficient (top) and the LK tracker (bottom), both without
Kalman Filtering, on data in which the subject exhibited
random movement. The performance of the normalized
correlation coefficient tracker was slightly better that that of
the LK tracker.

All of the trackers were more accurate when
measuring horizontal movement than when
measuring vertical movement. Even for the most
accurate tracker, the normalized correlation
coefficient tracker, there was a significant
disparity between the accuracy along the X axis
and along the Y axis [See Figure 5.10]. This may

 14

have occurred due to the possibility that lighting
changes may occur more rapidly with vertical
movement than horizontal. Also, because of the
position of the camera, moving the head up and
down in a nodding movement may cause the
tracked feature to become occluded more quickly
or to undergo a deformation that makes it harder
to track.

Other reasons for the performance difference
could lie in the fact that the vertical movement is
more erratic than horizontal movement. By
comparing the dark lines in the graphs in figures
5.10 and 5.11, one may observe that the vertical
motion (Figure 5.10) is more varied than the
horizontal motion (Figure 5.11). This is furthered
by the examination of the local variance of the
mouse movement in the horizontal and vertical
directions (See Figures 5.12 and 5.13). The
graph for the variance is much smoother in the
horizontal direction than the vertical. This may

account for why the trackers performed much
better in the horizontal direction.

In all of the cases examined, the range of
movement was much greater in the horizontal
direction. The average range for horizontal
movement was 247 pixels, which spans 100% of
the range of allowable motion in the x direction.
The average range for vertical movement,
however, was 88 pixels which only corresponds
to 48% of the possible movement in the vertical
direction.

The addition of Kalman Filters did not improve
the performance of either algorithm. On the
frames in which the tracking algorithms were
run, the system performed as before, but in the
frames in which the Kalman Filter was used to
estimate the position, the system recorded a
estimated movement of approximately zero
pixels [See Figure 5.11].

Ideal vs. Actual Mouse Movement on Y-axis for
Normalized Correlation without Kalman Filtering

-25
-20

-15
-10

-5
0
5

10
15

20
25

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Frame

Po
si

tio
n

Ch
an

ge

\

Figure 5.10 Even for the most accurate tracker, the normalized correlation coefficient tracker, tracking along the vertical axis was
not as accurate as along the horizontal axis.

 15

Ideal vs. Actual Mouse Movement on the X-axis for the
NCC tracker Alternating with a 2D Kalman Filter

-50
-40
-30
-20
-10

0
10
20
30
40
50

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

Frame

Po
si

tio
n

C
ha

ng
e

Figure 5.11 Performance of the normalized correlation coefficient tracker with 2D Kalman filtering and alternation. The thrashing
exhibited by the graph is indicative of the zero change readings output by the Kalman Filter in odd frames.

Local Variance for Horizontal Mouse Movement

-100

-50

0

50

100

150

200

250

300

350

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Frame

Pi
xe

ls

Figure 5.12 The local variance for the true mouse movement in the y direction.

 16

Local Variance for Vertical Mouse Movement

-30

-20

-10

0

10

20

30

40

50

60

70

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Frame

Pi
xe

ls

Figure 5.13 The local variance for the true mouse movement in the y direction. The local variance was calculated with a sliding
window of size 15. The graph for the horizontal movement (figure 5.12) is much smoother than that for the vertical movement which
suggests that tracking in the horizontal direction is easier for the system since the movements are much less erratic and are of higher
magnitudes.

Tracking methods employing Kalman Filtering
with alternation exhibited a higher error level on
frames in which the Kalman Filter was used to
estimate feature position [See Figure 5.14]. For
frames in which the tracking algorithm was used
instead of the Kalman Filter, the system was
approximately 2 times more accurate.

Mean Error in Kalman Frames and Non-
Kalman Frames

0

5

10

15

20

25

Er
ro

r (
in

 P
ix

el
s)

2DCorrAlt

2DLKAlt

4DCorrAlt

4DLkAlt

6DCorrAlt

6DLkAlt

Figure 5.14 For trackers using Kalman Filtering, the error
for frames in which the Kalman Filter was used to estimate
feature position was approximately 2 times larger than in
those which utilized the tracking algorithm. The set of bars
on the left side of the graph represent error in “non-Kalman”
frames and the set of bars on the right represent errors

encountered for frames in which the Kalman Filter was used
for feature estimation.

5.2 Results from Qualitative Experiments

Tracker performance was comparable to the
above results for the videotaped input as well.
Both the LK tracker with no Kalman Filtering
and the normalized correlation coefficient tracker
with no Kalman Filtering performed well. The
feature was never lost during the trials. The LK
tracker exhibited minimal drift while the feature
drifted from one eyebrow to the other when the
normalized correlation coefficient tracker was
employed. This drift corresponds to only
approximately 5 millimeters on the subject’s
face.

The normalized correlation coefficient tracker
with Kalman Filtering (2, 4, and 6 dimensions)
did not lose the feature, but drift was more
apparent. Drift in the 2D case was similar to that
observed in the case without any Kalman
Filtering, but the 4 and 6 dimensional cases

 17

exhibited slightly more pronounced drift, as the
feature drifted from one eyebrow to the other and
then to the eyelid. This corresponds to
approximately 10 millimeters. The drift was
observed while the subject was using Eagle
Aliens. This behavior is to be expected since the
Eagle Aliens application is characterized by
much more rapid movements than the spelling
applications. Since the subject may be changing
direction of movement suddenly, it is not
surprising that the Kalman Filter yields poor
estimates of feature location.

When the LK tracker was used in conjunction
with Kalman Filtering, the tracker lost the
feature multiple times. In the 2-D and 4-D cases,
the feature was lost twice per sequence tested
and, in the 6-D case, the feature was lost an
average of nine times on each sequence tested. In
each of the cases where the feature was lost, the
tracked region drifted from the eyebrow to the
forehead, then off the face and onto the
background. This corresponded to approximately
40 millimeters of drift along the subject’s face.
In addition to drifting along the face, the tracking
performed by LK tracker with 4D and 6D
Kalman Filters was jittery thereby making it
difficult for the subject to generate mouse clicks
by holding the cursor steady for one second.
Drift was encountered while the subject was
using both Eagle Paint and Eagle Aliens, both of
which are characterized by faster movement than
the spelling applications used in the trials .

6. Conclusions and Future Work

Based on the empirical evidence, the normalized
correlation coefficient tracker is the best suited
for this human-computer interaction real-time
vision application. The algorithm, though not the
least computationally expensive, provides a
highly-accurate tracker. This is of the utmost
importance for a system used as a driver for a
pointing device. The more reliable the tracker,
the less often the user will have to intervene to
relocate the search area manually. This is even
more important for a system such as the Camera
Mouse, which is primarily used by individuals
with disabilities. The fact that the algorithm is
many times more expensive than the normalized
correlation coefficient is mitigated by the fact
that computer processing power is still doubling
approximately every 18 months [17].

Though the Kalman Filter is applicable to many
different tracking situations, the Camera Mouse
is an application for which it does not always
perform optimally, especially when the subject
exhibited erratic movement. A conjecture for an
explanation of this is that human movement may
be neither smooth nor Gaussian. Based on the
experiments performed, the Kalman Filter was
not found to improve system performance
significantly.

Further improvements could be made upon the
Camera Mouse system by augmenting the LK
tracker with basic logic and checking for
physical impossibilities. Occasionally, the
location returned by the tracker is so far from the
last position that it cannot be accurate.
Incorporating such an outlier-rejection method
would reduce the number of times a feature is
lost.

An additional problem encounter with the
Camera Mouse is the occlusion of some features
as the subject moves. The occurrence of this
event can be reduced by the conscientious
selection of a feature to track, as some features
are better-suited to tracking than others. Of the
features tracked in this study, the eyebrow
proved to be the best, (see Section 5) but further
testing may identify additional suitable features.
Beyond this, however, it would be beneficial to
develop methods to identify and rank features
other than the one being tracked at any given
moment. This would establish a framework for
selecting a different feature upon which to base
the tracking if the feature currently being tracked
becomes undesirable (due to occlusion, poor
lighting, or another factor). Tracking multiple
features and selecting between them adds to the
computational complexity of the system
therefore one must take care to ensure the system
is still able to operate in real-time. When
complex error checking can be applied in real-
time, computer vision systems will have the
accuracy needed to be stable and reliable HCI
devices.

Acknowledgements

I would like to thank my advisors, Professor
James Gips and Professor Margrit Betke for their
guidance and support during this project.

 18

References

[1] J. Gips, M. Betke, and P. Fleming. The
Camera Mouse: Preliminary investigation of
automated visual tracking for computer access.
In Proceedings of the RESNA 2000 Annual
Conference, Orlando, FL, July 2000.

[2] The Camera Mouse Project at Boston
College. http://www.cs.bc.edu/~gips/CM

[3] M. Otte and H.H. Nagel. Optical Flow
Estimation: Advances and Comparisons.
Proceedings of the Third European Conference
on Computer Vision, pages 51-60, Stockholm,
Sweden, May 1994.

[4] M.Tistarelli. Multiple Constraints for Optical
Flow. Proceedings of the Third European
Conference on Computer Vision, pages 61-70,
Stockholm, Sweden, May 1994.

[5] U. Neumann and S. You. Integration of
region Tracking and Optical Flow for Image
Motion Estimation.
http://graphics.usc.edu/cgit/pdf/papers/lcip98-
full-un.pdf

[6] B. Coifman, D. Beymer, P. McLauchlan, and
J. Malik. A Real-Time Computer Vision System
for Vehicle Tracking and Traffic Surveillance.
http://www.cs.berkeley.edu/~zephyr/resume/TR-
Crw.pdf

[7] T. Tommasini, A. Fusiello, V. Roberto, E.
Trucco. Robust Feature Tracking. Proceedings of
the IAPR-AIIA Workshop on Artificial
Intelligence and Pattern Recognition Methods,
pages 93-98, Ferrara, Italy, April 1998.

[8] S. Gil, R. Milanese, and T. Pun. Feature
Selection for Object Tracking in Traffic Scenes.
Proceedings of SPIE Conference on Photonic
Sensors and Controls for Commercail
Applications – Intelligent Vehicle Highway
Systems, pages 253-266, Boston, November
1994.

[9] T-J. Cham and J. Rehg. A Multiple
Hypothesis Approach to Figure Tracking. In
Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, volume 2, pages
239-244, Fort Collins, 1999.

[10] M. Kohler. Using the Kalman Filter to
Track Human Interactive Motion – Modeling an

Initialization of the Kalman Filter for
Translational Motion. Technical Report 629,
Informatik VII, University of Dortmund, January
1997.

[11] W. Pasman, S. Zlatanova, S. Persa, J.
Caarls. Alternatives for Optical Tracking.
International Report, UbiCom, May, 2001.

[12] J. Hoffbeck and D. Landgrebe. Covariance
Matrix Estimation and Classification with
Limited Training Data. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol.
18, No. 7 , pages 763 - 767, July 1996.

[13] A. Rahimi, L-P. Morency, T. Darrell.
Reducing Drift in Parametric Motion Tracking.
In Proceedings of the Eighth IEEE International
Conference on Computer Vision, Volume 1,
pages 315-322, June 2001.

[14] C. Tomasi and T. Kanade. Shape and
Motion from Image Streams Under Orthography:
A Factorization Approach. International Journal
of Computer Vision, Volume 9, Number 2, pages
137-154, 1992.

[15] B.K.P. Horn and B. G. Schunck.
Determining Optical Flow. Artificial
Intelligence, 17(1-3), pages 285 – 203, August
1981.

[16] E. Brookner. Tracking and Kalman
Filtering Made Easy. John Wiley & Sons
Publishing, page 75, 1998.

[17] G. Moore. Cramming More Components
onto Integrated Circuits. Electronics, Volume 38,
Number 8, April 19, 1965.

[18] Lucas and Kanade. An Iterative Registration
Technique with an Application to Stereo Vision.
In Proceedings of the 7 th International Joint
Conference on Artificial Intelligence, 1981.

[19] R. E. Kalman. A New Approach to Linear
Filtering and Prediction Problems. Journal of
Basic Engineering, Trans. of ASME, Ser. D,
Vol. 82, No. 1, pages 35-45, March 1960.

[20] H. Jin, P. Favaro, and S. Soatto. Real-Time
Feature Tracking and Outlier Rejection with
Changes in Illumination. In Proceedings of the
Eighth IEEE International International
Conference on Computer Vision, Volume 1 ,
pages 684-689, July 2001.

 19

[21] M. Betke, J. Gips, and P. Fleming. The
Camera Mouse: Visual Tracking of Body
Features to Provide Computer Access For People
with Severe Disablilities. IEEE Transactions on
Neural Systems and Rehabilitation Engineering.
In press, April 2002.

