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Abstract 
 
Tracking methods are evaluated in a real-time 
feature tracking system used for human-
computer interaction (HCI). The Camera Mouse, 
a HCI system that uses video input to manipulate 
the mouse cursor, was used as the test platform 
for this study. The Camera Mouse was developed 
to assist individuals with severe disabilities in 
using computers, but the technology may be used 
as a method for HCI for those without 
disabilities as well. The initial location of the 
feature to be tracked is set manually by the user 
by clicking on a portion of the image window 
and the system tracks its location in subsequent 
frames. Tracking methods were evaluated in 
terms of the best combination of computational 
efficiency and accuracy. Trackers evaluated 
include feature matching using normalized 
correlation coefficients and optical flow, in the 
form of a Lucas-Kanade tracker. Each tracking 
algorithm is evaluated both with and without the 
addition of Kalman Filters. The effects of 2-D (x 
and y location) 4-D(location and velocity in the x 
and y directions), and 6-D (location, velocity, 
and acceleration in the x and y directions) are 
examined and analyzed. The normalized 
correlation coefficient tracker, without Kalman 
Filtering, was found to be the best tracker in 
terms of suitability to the human-computer 
interaction system implemented.  
 
 
 
1 Introduction 
 
The current human-computer interaction 
paradigm, based around the keyboard and 
mouse, has seen little change since the advent of 
modern computing. Since many desktop and 
laptop computers now come with cameras as 
standard equipment, it is desirable to employ 
them for next -generation human-computer 
interaction devices.  By relying on visual input 
rather than tactile input, users are free to use 
their hands for other tasks while interacting with 
their computers, ultimately enabling software 

designers to develop new models of user 
interaction.  
 
Systems that interpret visual data have become 
more prevalent as computer capabilities have 
expanded. In order to more effectively utilize the 
power available in standard desktop computers 
and to expand the range of devices that utilize 
computer vision techniques, algorithms must be 
developed that lessen the load on the processor 
without sacrificing robustness or accuracy. If 
successful, this will enable applications, such as 
a camera-based pointing device, to be efficient 
enough to have only a negligible impact on 
computer system performance. Such advances 
would open the door for more intelligent human-
computer interfaces, allowing users to move far 
beyond what is possible with the standard 
keyboard and mouse combination. The 
foundation for any such system must be laid with 
efficiency in mind. Useful applications of vision 
systems are few if the vision processing takes up 
the majority of system resources. This being 
said, it follows that a robust vision system must 
be quick, accurate and use a reasonable amount 
of processing power. 
  
Such interfaces also have especially relevant 
applications for people who cannot use the 
keyboard or mouse due to severe disabilities. 
The traditional human-computer interfaces 
require good manual dexterity and refined motor 
control. Users with certain disabilities, however, 
may lack these abilities. The primary goal of this 
research project is to refine tracking methods 
currently in use in such an application as to 
provide a version of the system with less 
overhead, thereby expanding the range of uses to 
which it may be applied. As tracking accuracy 
increases, the amount of user intervention 
required for system setup and initialization will 
decrease. This will move human-computer 
interface technology closer to the possibility of 
operating without the use of one’s hands at all. 
 
The real-time feature tracking system to be used 
as the testing platform for this experiment is the 
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Camera Mouse [1,2,21], a system developed at 
Boston College that uses video input to control 
the mouse cursor. Upon start-up, a feature is 
selected for tracking by clicking on it in the 
vision window. The system then tracks that 
feature in real time, moving the mouse cursor 
accordingly. 
 
The purpose of introducing the Kalman Filter 
[19] is to reduce the amount of processor time 
needed by the tracking application, thereby 
allowing for third-party applications to have a 
greater share of CPU time. The Kalman Filter 
was applied in two distinct ways: estimating the 
feature location in every frame and in every 
other frame. Using the filter every frame allowed 
for a smaller search area for the tracking 
algorithm whereas, when using the Kalman filter 
every other frame, the Kalman estimate was used 
instead of running the tracking algorithm on that 
frame. Both methods significantly reduce the 
CPU time needed by the system, but the scheme 
in which the Kalman filter is used in every frame 
is more efficient in terms of CPU load. It is 
anticipated that tracking systems that are less 
taxing upon CPUs will eventually enable vision-
based tracking systems to be installed in a wide 
variety of technology, from intelligent vehicles, 
to almost any other application where head 
tracking and feature analysis is required. 
 
This paper describes the algorithms and 
computer vision techniques used to refine a real 
time feature tracking system in terms of demand 
on the CPU in such a manner that does not 
significantly impact tracking accuracy.  
 
Among the methods presented, one employs 
visual information about the motion of a feature 
in conjunction with the mathematics of the 
Kalman Filter to alternately measure and 
estimate the location of the feature. This method 
did reduce CPU load, but the reduction in 
tracking accuracy is prohibitive to using this 
approach. 
 
The normalized correlation coefficient tracking 
without any Kalman Filters proved to be the 
most accurate algorithm. This method, in 
addition to being fairly accurate, was slightly 
more demanding on the CPU than the next -best 
method, the Lucas-Kanade (LK) tracker [18]. 
 
Utilizing the normalized correlation coefficient 
tracker on a smaller search area while using the 
Kalman filter to estimate feature position every 

frame proved to be the least CPU intensive 
method tested. While this was not as accurate as 
the normalized correlation method without 
Kalman filters, the processing time was 
considerably less. 
 
Since computers double in power approximately 
every eighteen months [17], tracking accuracy 
was deemed more important than computational 
efficiency for this application. With this in mind, 
the normalized correlation coefficient is the 
tracking method best-suited to this computer 
vision system. 
 
 
 
 
1.1 Previous Work 
 
Within the field of computer vision, there is a 
proliferation of different tracking algorithms 
[6,7,9]. Many are variations upon a common 
theme [3,5]. Optical flow [4,5,6,7,15], inertial 
tracking [11], the Condensation algorithm and 
probabilistic systems [9] have all been used to 
address the problem of identifying and following 
movement in visual systems. While, in general, it 
is possible to regard any algorithm for the 
computation of the optical flow as a solution to 
the tracking problem [4], the Lucas-Kanade 
tracking method addressed the feature tracking 
problem through the utilization of optical flow to 
detect motion [14, 5]. The LK method utilized a 
process of factorization to interpret the image 
data. Similarly, Kalman Filtering [19] has been 
applied to many of these techniques [7,9,11] in 
an attempt to smooth out noise and reduce 
feature drift [7, 13]. 
 
In this paper, a system, which processes real-
time image data consistently at approximately 
27-29 frames per second is presented. Since the 
intended use of this system is as a driver for a 
pointing device, drift of the actual feature being 
tracked is not relevant, so long as the direction 
and magnitude of the motion can still be 
accurately measured. Therefore, minimizing 
drift, as described in Rahimi et al. [13] is not as 
appropriate to this application as other types of 
feature trackers. Even if the feature being tracked 
drifts to an entirely different region of the face, 
the system will generally still perform as desired. 
It is only if drift becomes so pronounced that the 
feature drifts from the object being tracked to the 
background that it is detrimental to system 
performance to the point where it is unusable.  
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Though still usable with large amounts of drift, 
methods that have minimal drift are still 
preferred since the Camera Mouse system 
becomes much harder to use as the tracked 
region drifts farther and farther from the true 
location. 
 
The Camera Mouse system, as described in 
[1,2,21], has been modified to run on one 
computer and one program that integrates the 
functionality of both the driver and the vision 
tracker. This implementation of the Camera 
Mouse system requires less hardware than that 
described in [1,2,21] since the end-users no 
longer need the digital acquisition board nor the 

external switch used for alternating between the 
Camera Mouse and the traditional mouse. 
 
 
  
2. System Overview 
 
The system may be broken down into two or 
four steps, depending on whether or not Kalman 
Filtering is being employed. If the filters are 
used, after initialization, the program is in a 
“training” step in which the error covariance 
matrix is initialized [12]. After training the error 
covariance matrix, the feature position is tracked  

 

Figure 2.1 The system may be run in one of two branches: Kalman mode and tracking without Kalman Filters. Both modes make use 
of either the normalized correlation coefficient or the LK tracker, depending on what is selected at start up.
 
using the chosen tracking algorithm on even 
frame numbers and estimated using the Kalman 
Filter on odd frames. After each frame the 
Kalman filter equation is updated in order to 
refine its estimate of the position. 
 

 
When Kalman filtering is not being used, the 
feature is tracked using only the selected tracking 
algorithm. 
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2.1 Normalized Correlation Tracking 
 
 
The normalized correlation coefficient tracking 
method computes the correlation coefficient for 
each point a search area that is centered around 
the position of the feature in the previous frame 
[See Equation 2.1.1]. 
 
(Eq 2.1.1) 
                             n               n        n  
           n Σ xiyi - Σxi Σyi 
                           i=0             i=0    i=0  

R(x,y) =   ____________________________________________ 
      

  n                n                           n                 n  
             √ ( n Σxi

2 –( Σxi)2) √ ( n Σyi
2 –( Σyi)2)                                                                  

                 i=0        i=0                i=0        i=0 
 

 
where n Σ xiyi - Σxi Σyi is the covariance of the average 
brightness values of the pixels in the search area,  ( n Σxi

2 –( 
Σxi)2) is the standard deviation of the average pixel 
brightness values in the x direction, and  ( n Σyi

2 –( Σyi)2) is 
the standard deviation of the average brightness values in the 
y direction, and n is the value for the height and width of the 
feature. 
 
The normalized correlation tracker predicts the 
location of the feature in the current frame based 
on the point in the search area that yields a 
correlation coefficient which best matches the 
correlation coefficient calculated in the previous 
frame. Since the tracking is based on search 
results obtained in the previous frame, this 
searching algorithm may classified as a recursive 
filtering method. The search space for equation 
2.1.1 is fixed therefore the variance of the 
correlation estimate is also considered to be 
fixed. 
 
The search area utilized for this paper was 25 
pixels in each direction from the center of the 
feature (a 50x50 pixel search area). The size of 
the feature being tracked was 15x15 pixels. 
 
The correlation coefficient acts as a metric for 
measuring the degree to which a region of the 
current image matches the corresponding region 
in the previous frame. This method allows the 
feature location to be updated at a rate of 
approximately 30 times per second.  
 
The algorithm operates by calculating the 
normalized correlation coefficient for every point 
in the search area, which is centered around the 
feature’s location in the previous frame. The 
point with the highest correlation is declared to 

be the new location of the feature. If no point in 
the search area has a correlation coefficient 
above a certain threshold, the feature is declared 
to be “lost” and the system should be re-
initialized. 
 
 
 
2.2 Lucas -Kanade Tracking 
 
The LK [14, 18] tracker is based upon the 
principle of optical flow and motion fields [3, 4, 
15]. It allows for recovery of motion without 
assuming a model of motion [14]. The 
implementation used was that of the Intel 
OpenCV library. 
 
While the OpenCV implementation of the LK 
algorithm allows one to track multiple points 
simultaneously, only one point was tracked in 
this study. Tracking more than one feature may 
have improved the LK tracker’s performance, 
but such a method was not implemented in this 
system.  
 
Optical flow is defined as an apparent flow of 
image brightness. Calculations of optical flow 
assume that if I(x,y,t) is the brightness of pixel 
x,y at time t, then the brightness of every point in 
the image does not change in time. This is not to 
say that pixels at the same location in an image 
sequence must be the same brightness, but rather 
that the same feature always appears with the 
same brightness, no matter where in the image it 
appears. 
 
If the displacement of a pixel from one image 
frame to another is defined as (dx,dy) then, via 
the constant brightness assumption, we may state 
that: 
 
(Eq. 2.2.1) 
 

I(x+dx,y+dy,t+dt) = I(x,y,t) 
 

Where dt is defined as the difference in time between the new 
image and the old image.  
 
and:  
 
(Eq 2.2.2) 
 

∂I/∂x dx + ∂I/∂y dy + ∂I/∂t dt + Ë = 0 
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If u is defined as dx/dt and v is defined as dy/dt, 
then one may derive the optical flow constraint 
equation: 
 
(Eq 2.2.3) 
  

- ∂I/∂t = ∂I/∂x u +∂I/∂y v 
 
Feature position estimate is carried out by 
computing the minimum of the sum of squared 
differences in pixel brightness values within a 
given window. Using partial derivatives to 
minimize the sum of squared errors yields:  
 
(Eq. 2.2.4) 
 
Σ W(x,y)Ix

2 u +Σ W(x,y)IxIy v = - Σ W(x,y)ItIx 
     x,y                      x,y                                          x,y 

and: 
 
(Eq. 2.2.5) 
 
Σ W(x,y)IxIy u + Σ W(x,y)Iy

2 v = - Σ W(x,y)ItIy 
   x,y                          x,y                                       x,y 

 
Where W(x,y) represents the Gaussian window over which 
the Lucas-Kanade filter computes the optical flow. 
 
The point generated via equation 2.2.5 is that 
which minimizes the error in brightness values 
between the feature in frame t-1 and in frame t. 
Pixels are grouped according to a window size 
parameter. In the case of equations 2.2.4 and 
2.2.5, the width and height of the window is 
defined by W(x,y) and x and y represent the 
coordinates of pixels over which we sum. 
 
 
 
2.3 Kalman Mode  
 
The Kalman Filter operates through the repeated 
updates to the matrices that describe the system. 
Upon initialization, all that is necessary is the 
proper specification of the state vector, the 
observation matrix, transition matrix, dynamics 
model, and measurement covariance matrix [16]. 
The time update equations project the current 
state estimate ahead in time and the measurement 
update adjusts the projected estimate by an actual 
measurement that is obtained through the use of, 
in this system, either the LK tracker or the 
normalized correlation coefficient tracker. 
 
The Kalman Filter, as implemented in the Intel 
OpenCV library, produces its estimates through 

the use of a feedback control: the filter first 
estimates the system state at some time which it 
then updates using feedback in the form of 
measurements. These measurements, however, 
are subject to process and measurement noise 
and they must be adjusted accordingly. Because 
of the noise, the Kalman Filter time-update 
equations must use an error covariance matrix 
when projecting the state forward. Similarly, the 
measurement update equations must update the 
approximations of the covariance matrix to 
increase the probability that the system will 
generate an improved a posteriori estimate. 
 
The Kalman Filter measurement is of the form: 
 
(Eq 2.3.1) 

zk = Hk+ vk 
 
Where vk is a random variable representing measurement 
noise and H is a matrix which relates the state to the 
measurement. 
 
 
The step in which the Kalman Filter is used to 
estimate the feature location utilizes the Kalman 
time update equations: 
 
(Eq. 2.3.2) 

X - 
k+1 = Ακ  Xk 

 
Where X - 

k+1 is the a priori state estimate at step k given 
knowledge of the process prior to step k, Xk is the a 
posteriori state estimate at step k given the measurement zk, 
and Ak is a matrix which relates the state at time step k to the 
state at step k+1. 
 
 
(Eq 2.3.3) 

P-
k+1 = AkPkAT

k+Qk 
 
Where Ak is the same matrix as in Eq. 2.3.2, P-

k is the a priori 
estimate error covariance, and Qk is the process noise 
covariance. 
 
 
On frames where the tracking algorithm is used 
to find the feature location, the various matrices 
that comprise the Kalman Filter are updated 
using the Kalman Measurement Update 
Equations: 
 
(Eq. 2.3.4) 
 

Kk = P-
kHT

k(Hk P-
kHT

k + Rk)-1 

 
Where K is the Kalman gain matrix, Rk is the measurement 
noise covariance and the other matrices are the same as in 
equations 2.3.2 and 2.3.3. 
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(Eq. 2.3.5) 
 

Xk = X – 
k + Kk(zk - Hk X – 

k) 
 
Where each term represents the same matrix as in above 
equations.  
 
 
(Eq. 2.3.6) 
 

Pk = (I – KkHk) P – 
k  

 
Where each term represents the same matrix as in above 
equations and I is the identity operator. 
 
Kalman Filters of 3 different dimensions were 
evaluated in this system. The filters considered 
were of 2, 4 and 6 dimensions of motion. The 
two degree filter considered the feature’s 
horizontal and vertical position. The four 
dimensional filter considered these values as 
well as velocity in both the horizontal and 
vertical direction. The six dimensional filter, in 
addition to the dimensions tracked by the four 
dimensional filter, considered acceleration in 
both directions.  
 
The system was designed to implement Kalman 
Filters in two ways: with and without alternation. 
Running the system with alternation means that 
the system will use the Kalman Filter to estimate 
feature position in odd frames and the tracking 
algorithm on even frames. Operating without 
alternation is only applicable to the normalized 
correlation coefficient algorithm. When the 
system is run in this mode, the Kalman Filter is 
used on every frame to estimate the feature 
position and then the normalized correlation 
coefficient is used to search the area around the 
predicted location.  
 
At each iteration, the system approximates the 
feature location by using equations 2.3.1 through 
2.3.6. This method differs from the non-Kalman 
correlation coefficient method in that the area 
searched by the normalized correlation 
coefficient is reduced by three quarters. This 
translates to a three quarters reduction of the 
number of times the system will have to compute 
equation 2.1.1. 
 
When operating in Kalman Mode with 
alternation, the system has three distinct steps. 
First, the error covariance matrix is 
approximated using training data [12]. This was 
achieved by calculating the covariance of the 
true feature location and the location predicted 

by the tracking method (either LK or normalized 
correlation coefficient) for a given number of 
frames on a saved input sequence. The true 
feature locations in this sequence were hand-
marked. This allowed for an approximation of 
the measurement noise covariance encountered 
by the system. 
 
Once the covariance matrix has been trained, the 
system tracks the feature using the selected 
tracking algorithm on even frames using 
equations 2.3.4 through 2.3.6, and estimates the 
feature location via the Kalman Filter’s a 
posteriori state matrix on the odd frames using 
the state matrix resulting after the application of 
equations 2.3.2 and 2.3.3.  
 
The Kalman Filter’s state matrix represents the 
filter’s perception of the system state at time t. 
For the 2-D case, the state matrix reduces to a 
vector containing the x and y location of the 
feature. In the 4-dimensional case, the state 
matrix contains the location and velocity. The 6-
dimensional case populates the state matrix with 
the feature location, velocity and acceleration. 
The measurement matrix differs from the state 
matrix in that the system sets it during the non-
Kalman frames via the results of applying the 
chosen tracking algorithm.  
 
When switching from using a 2 dimensional 
filter to a 4 or 6-D filter, the number of 
parameters remain the same, but the size of the 
matrices change. When performing the update, 
however, one still needs only to update the 
position of the feature since, according to 
Kohler, this is the only one, of the three 
components being measured, that can be directly 
measured from the video input [10]. Values for 
acceleration and velocity could be calculated 
using the position of the feature through a series 
of frames, but the Kalman filter will calculate 
these values as needed through the components 
of the state matrix. 
 
 
 
2.4 Motion Translation and Mouse 
Movement 
 
After the feature location is determined, the 
movement relative to the previous frame is 
calculated. This measurement is used to 
determine how far and in what direction the 
mouse cursor should be moved on the screen.  
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The movement of the feature within the image 
window is translated to screen coordinates 
through a function that takes into account the 
screen resolution, the size of the image being 
analyzed and the apparent motion of the feature 
(See Equations 2.4.1 and 2.4.2). Before 
translating image plane coordinates to screen 
coordinates, the image window is first reduced 
so that only the interior three quarters of the 
image is considered (i.e. the edge of the image 
window does not correspond to the edge of the 
screen).  
 
(Eq 2.4.1) 
 

      (( 0.5 dx - px,i)mx) 
                         ______________ + 0.5 mx if dx /4<px,I<3dx/4 
                 0.5 dx    
cx= 

      0 if px,I < dx/4 
                     1 if px,I > 3dx/4 
 
Where dx is the width of the image (in pixels), mx is the width 
of the monitor (in pixels), and px,i is the x coordinate of the 
predicated feature location in frame i. The image is mirrored 
in the horizontal direction to make it easier for users to 
coordinate head movement with screen movement, therefore 
0.5dx-px,I in the above equation is negative when the feature 
moves to the user’s right. 
 
(Eq 2.4.2) 
 

  (( 0.5 dy – py,i)my) 
                     ______________ + 0.5 my if dy /4<py,I<3dy/4 
              0.5 dy    
cy= 

  0 if py,I < dy/4 
                 1 if py,I > 3dy/4 
 
Where dy is the height of the image (in pixels), my is the 
height of the monitor (in pixels), and py,i is the y coordinate 
of the predicated feature location in frame i.  
 
Both of the above equations assume that the 
monitor resolution has a 3:4 aspect ratio, the 
same as is used for the input images.  
 
This method of translation makes it easier for the 
user to move the mouse to the edge of the screen 
while also reducing the likelihood that the 
tracker will lose sight of the image due to its 
movement out of the camera’s field of view. 
 
 
 
3. Hardware  
 
Input was gathered using a Matrox Meteor II 
video capture board in conjunction with a Sony 

EVI-D30 color video CCD camera. Video input 
was also gathered with a Sony Handycam Hi-8 
video camera. The system used for development 
and testing was a dual 1GHz Pentium III 
machine with 256 MB of PC-133 SDRAM. 
Grayscale and color images were processed at 
320x240 pixels. 
 
 
 
4. Experiments 
 
Experiments were conducted on different series 
of images representing different ranges of 
movement. Input images were gathered with the 
subject moving his head randomly as well as 
while using a mouse-based spelling program, 
Midas Touch [See Figure 4.1]. All video data 
was gathered under normal laboratory lighting 
(florescent bulbs); no special lights were used.  
 
The subject was asked to make random or erratic 
movements for some input sequences to simulate 
the types of movements encountered with users 
with severe disabilities such as Cerebral Palsy. 
Such users often have difficulty moving the 
mouse pointer from one point to another in a 
straight line with constant speed. Because it is 
primarily people with disabilities who use the 
Camera Mouse system, the evaluation of 
tracking methods needed to account for both 
smooth and more erratic movement.  
 
Feature selection was performed in such a 
manner to maximize the likelihood that the 
system would be able to differentiate the feature 
from its surrounding area. Areas with significant 
contrasts in color or texture, such as the eyebrow 
or nostril, provide regions with sharp edges that 
facilitate accurate tracking [8]. The edges of 
these features provide the best regions to track 
since they usually differ significantly in color 
from the flesh surrounding them. Features 
tracked in this  study include the edge of the 
eyebrow closest to the nose, the corner of the 
nostril, and the bridge of the subject’s 
eyeglasses.  
 
 
 
4.1 Quantitative Experiments 
 
Three different input sequences were captured 
using 3 different people. In one sequence, the 
subject was asked to make random head 



 9

movements and in the other two, the subject used 
the system to control the Midas Touch spelling 
application.  
 

 
Figure 4.1 The Midas Touch spelling application. Users 
spell words by moving the mouse cursor over a character and 
then dwelling within a small radius of pixels for a second to 
generate a mouse click. Subjects were asked to spell the word 
“hello” during trials.  
 
When using the Midas Touch spelling program, 
the subjects were instructed to spell the word 
“Hello.” The subjects did not make any 
movements that were not associated with 
performing this task (i.e. subjects did not look 
away from the screen during input capture), 
except in the case of the sequence with random 
movement where the subject was asked to move 
his head in any direction he wished. The subjects 
were positioned approximately two feet from the 
camera and they remained at this distance for the 
duration of the input sequences.  
  
Evaluation of algorithms was performed in terms 
of accuracy of the tracking. Accuracy was  
measured by comparing Pd,i,  a vector 
representing the distance (in pixels) the mouse 
cursor should have moved (assuming perfect 
tracking) in the ith frame, and, Pt,i , a vector 
representing the distance the mouse cursor was 
actually moved in the ith frame [See Equation 
4.1]. The mean of the Euclidean distance 
between these two points over all frames in the 
input sequence was taken as a single value to 
quantify tracker performance relative to one 
another. 
 
 (Eq. 4.1) 
 
mean error =    
 
Where n is the length of the image sequence (in frames), Pd,i 
is the number of pixels the tracker predicted the cursor 
should have been moved in the ith frame, and P t,i is the true 
number of pixels the mouse cursor should have moved in the 
ith frame.  

This method of evaluation, as opposed to 
measuring the location of the feature, does not 
penalize the system for errors made at the 
beginning of the trial more than those made near 
the end. The error calculation takes only the 
change in mouse coordinates from the previous 
frame to the current frame into account, not the 
absolute error encountered since the start of the 
tracking. In this sense, the error is non-
cumulative. Similarly, as long as the motion 
being tracked is in the same direction and 
magnitude as the actual motion, the tracker is 
evaluated favorably.  
 
Other evaluations of feature trackers have 
employed an error metric that measures the drift 
in feature position from the ground-truth feature 
position [20]. This evaluation method, while 
well-suited to systems solely concerned with 
feature tracking, is less relevant to the Camera 
Mouse application. The Camera Mouse system 
does not need to track the same feature to operate 
properly. The movement of the mouse cursor 
will remain true to the user’s wishes as long as 
the direction and magnitude of feature motion 
can still be measured. This distinction makes the 
effects of drift less significant; therefore the 
evaluation method must take this into account. 
 
Input image sequences were pre-captured at a 
rate of 30 frames per second and hand-evaluated. 
In each series, a feature was selected and the 
location of that feature in each frame was 
recorded. Each image in the input sequence was 
opened in Paint Shop Pro and the location, in 
pixels, of the center of the chosen feature was 
noted in a text file. This information was later 
used by the system to determine the error for the 
measurement in a given frame. A subset of this 
data was also used to train the error covariance 
matrix for the Kalman Filters. Approximately 10 
seconds of input was hand-classified (300 
frames). 
 
Since the establishing of the “true” feature 
location in every frame was performed by hand, 
it is subject to some degree of human error. 
Though the utmost care was taken to select the 
exact location of the center of the feature in 
every frame, some error (on the order of 1 or 2 
pixels) may have occurred. 
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0
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4.2 Qualitative Experiments 
 
Input data of a much longer duration than the 
hand-classified sequences was recorded on 
videotape. Video was recorded while the subject 
used the system to control a number of 
applications including Midas Touch, Eagle 
Aliens, Speech Staggered, and Eagle Paint [See 
Figure 4.2]. Nine minutes of video input was 
captured in this manner.  
 

 

 

    
Figure 4.2 The applications used during video capture. 
From top to bottom: Eagle Aliens, Eagle Paint, and Speech 
Staggered. 

 
The four different programs were selected 
because of the different types of movement each 
requires. Mouse movement while using Eagle 
Aliens is characterized by sudden changes in 
direction (as the user is trying to hit aliens that 
appear in random locations). Erratic, seemingly 
random movements characterize mouse 
movement associated with Eagle Paint since the 
user is able to “paint” by moving the mouse 
cursor anywhere in the application window. The 
movement during this application may be slow 
and deliberate or fast and wild. The two spelling 
programs, Midas Touch and Speech Staggered 
are similar in that both require the user to move 
the mouse over a desired character or group, 
respectively, and hold the cursor in the same 
region for a period of time to generate a mouse 
click. 
 
Evaluation of each tracker on the videotaped data 
was carried out by hand. If the tracker lost the 
feature, it was reinitialized. The number of times 
the operator needed to manually reset the tracker 
for each tracking method on each input sequence 
and the amount of drift was recorded. Drift was 
measured in terms of the degree to which the 
tracked region deviated from the position to 
which it was initialized. Due to the length of the 
input sequences (over 16,200 frames) the true 
feature location was not recorded for every 
frame. The drift was estimated through 
observation of the movement of the tracked 
region in the video image. 
 
 
 
 
5. Results and Discussion 
 
Qualitatively, the LK tracker without Kalman 
Filtering and the normalized correlation 
coefficient tracker performed with similar levels 
of reliability. Both were accurate enough to 
allow the user to manipulate the mouse cursor as 
desired. While the tracking did drift, motion was 
conserved and therefore it had no apparent effect 
on the tracking [See Figure 5.1]. When the user 
moved, the region tracked by the system moved 
approximately the same distance and in the same 
direction as the true feature. 
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Figure 5.1 In this image sequence, the LK tracker was used 
without Kalman Filters. The region containing the tracked 
feature is blown up in each image to make it easier to see. 
The lighter square denotes the ideal feature location whereas 
the darker square denotes the location returned by the 
tracking algorithm. The area tracked in this sequence is the 
left side of the bridge of the glasses.  
 
Features tracked were deemed suitable for 
tracking if they were easily differentiable from 
their immediate surroundings. This quality may 
be observed by examining the correlation 
coefficients observed when a template is 
compared with itself [See Figure 5.2]. Even 
when the template is only a small number of 
pixels away from the exact position, the 
correlation coefficient is seen to be significantly 
less than 1, the value for a perfect match.  
 
For methods that utilized the Kalman Filter, both 
the measurement and process noise covariance 
matrices changed little during training. The 
process noise matrix, was assumed to be zero for 
this study. The measurement noise matrix 
remained fairly stable, with covariance values on 
the order of 1 and 2 pixels. 
 
The features chosen for this study include the 
corner of an eyebrow, a nostril, and the bridge of 
the subject’s glasses. All three of these exhibit 
the above quality, though, of the features used, 
the eyebrow was the most easily differentiated 
from itself whereas the glasses template was 
slightly harder to differentiate from itself. Since 
all features used in this study exhibited this 
quality, the choice of the feature itself was 
deemed to have a negligible impact on the 
results. Had the features been harder to 

differentiate from themselves, it is likely that the 
error rates for each of the tracking methods 
tested would have been greater.  
 

 
Figure 5.2 A three-dimensional plot of the correlation 
coefficient values obtained when trying to match a template 
consisting of the corner of the subject’s eyebrow with itself. 
The peak in the graph represents the location at which an 
exact match is obtained.  
 
 
 
 
5.1 Results from Q uantitative Experiments 
 
When tracking with the normalized correlation 
coefficient and Kalman filtering (without 
alternation), the tracking was accurate while the 
feature movement was relatively slow. Sudden 
movements, in which the feature moved out of 
the search area, caused significant drift but did 
not result in a complete loss of tracking. This is 
significant since a total loss of the feature would 
require user intervention to re-initialize the 
tracker. 
 

Type of 
Kalman 
Filter 

Correlation 
Coefficient 

Lucas-
Kanade 
Tracker 

No Kalman 
Filtering 

CorrNoKalman LKNoKalman 

Kalman 
Filtering 
without 

Alternation 

2DCorrNoAlt 
4DCorrNoAlt 
6DCorrNoAlt 

2DLKNoAlt 
4DLKNoAlt 
6DLKNoAlt 

Kalman 
Filtering with 
Alternation 

2DCorrAlt 
4DCorrAlt 
6DCorrAlt 

2DLKAlt 
4DLKAlt 
6DLKAlt 

Figure 5.3: A summary of the abbreviations used to denote 
each tracking combination in the subsequent charts in this 
section. The prefixes 2D, 4D and 6D refer to the dimension 
of the Kalman Filter being applied.  
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In terms of processing time, the normalized 
correlation coefficient tracker with no Kalman 
Filters was the most demanding. The least 
demanding was the normalized correlation 
coefficient with a 4 dimensional Kalman Filter 
[See Figure 5.4]. Despite the large time required 
for the normalized correlation tracker, the system 
was still able to operate at approximately 30 
frames per second.  Since the increase in 
computing time still allowed for the processing 
of real-time data, the cost was deemed 
acceptable for this type of system. 
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Figure 5.4 The mean time, in milliseconds, needed to process 
a frame of data using every possible combination of trackers 
and Kalman Filters implemented in the system.  
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 Figure 5.5 Plot of mean tracker error versus computation 
time. Point A represents a group of trackers consisting of 
2DCorrNoAlt, 4DCorrNoAlt, 6DCorrNoAlt. Point B 
represents the normalized correlation coefficient tracker with 
no Kalman Filtering and the LK tracker with no Kalman 
Filtering. Point C represents a group of trackers consisting of 
2DCorrAlt, 4DCorrAlt, and 6DCorrAlt. Point D represents 
the performance of the 2DLKAlt, 4DLKAlt and 6DLKAlt 
trackers. The best balance between time and accuracy is 
yielded by the normalized correlation tracker with no Kalman 
Filtering.  
 
In addition to the differing levels of demand 
placed upon the CPU, each algorithm performed 
with a differing degree of accuracy. In some 
cases, as expected, a decrease in computation 
time was accompanied by a decrease in 

accuracy, as when applying Kalman Filtering 
with alternation to the normalized correlation 
coefficient tracker. This, however, was not 
always the case. Though the normalized 
correlation coefficient tracker used more time to 
locate the feature than the LK tracker, it was still 
deemed to be the best suited for this application 
since it produced a smaller error. This being said, 
the tracker with the best balance between time 
and accuracy was the normalized correlation 
coefficient tracker without Kalman Filtering [See 
Figure 5.5].  
 
Though the graph in Figure 5.5 shows that the 
normalized correlation tracker with a 2D Kalman 
Filter and no alternation performed with 
approximately the same mean error and a smaller 
time requirement, that method was not 
determined to be optimal because of its 
propensity to drift when the user makes sudden 
movements. When examined on data in which 
the subject exhibited random movement, the 
normalized correlation tracker, when combined 
with Kalman Filtering, performed with a much 
higher error than the version without Kalman 
Filtering [See Figure 5.6]. 
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Figure 5.6 Mean error for each tracking method for input 
with random movement (top) and input in which the subject 
used the Camera Mouse to control computer applications 
(bottom). Though the normalized correlation tracker with and 
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without Kalman Filtering performed similarly on some input, 
the version without Kalman Filtering worked better on erratic 
movement. Mean feature velocity in sequence with random 
movement was 110.2 pixels per frame and the mean velocity 
in the bottom sequence was 55.8 pixels per frame. Each entry 
in the graph represents the same tracking method as in Figure 
5.3. 
 
On the image series in which the subject was 
using the Camera Mouse to manipulate the 
mouse cursor in a third-party application, the 
normalized correlation coefficient tracker 
performed with the highest level of accuracy 
[See Figures 5.7 and 5.8]. Though some drift 
was observed, the motion recorded was 
consistent with the movement of the feature and, 
therefore, the system performed as desired. 
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Figure 5.7 The normalized correlation coefficient tracker 
without Kalman filters performed the best of all tested 
tracker/filter combinations. The dark line is the actual 
number of pixels the mouse should have been moved and the 
lighter line is the amount the system moved the mouse 
pointer. 
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Figure 5.8 The LK tracker without Kalman filters 
performed the next best of all tested tracker/filter 
combinations. The dark line is the actual number of pixels the 
mouse should have been moved and the lighter line is the 
amount the system moved the mouse pointer. One can see 
that, though the two lines have a similar level of disparity as 
those in figure 5.3, this tracking method has a higher mean 

error due to the more frequent occurrence of large errors. One 
such occasion may be seen around frame number 110 in this 
figure. 
 
With random movement, the normalized 
correlation coefficient-based tracker performed 
slightly better than the LK tracker and much 
better than all the other combinations of tracking 
and filters [See Figure 5.9]. While this behavior 
is to be expected, based on the trackers’ relative 
performances on the non-random movement, the 
degree to which the normalized correlation 
coefficient tracker outperformed the LK tracker 
was more pronounced on the random data. 
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Ideal vs. Actual Mouse Movement on X 
Axis for the LK Tracker with No Kalman 
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Figure 5.9 Performance of the normalized correlation 
coefficient (top) and the LK tracker (bottom), both without 
Kalman Filtering, on data in which the subject exhibited 
random movement. The performance of the normalized 
correlation coefficient tracker was slightly better that that of 
the LK tracker. 
 
All of the trackers were more accurate when 
measuring horizontal movement than when 
measuring vertical movement. Even for the most 
accurate tracker, the normalized correlation 
coefficient tracker, there was a significant 
disparity between the accuracy along the X axis 
and along the Y axis [See Figure 5.10]. This may 
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have occurred due to the possibility that lighting 
changes may occur more rapidly with vertical 
movement than horizontal. Also, because of the 
position of the camera, moving the head up and 
down in a nodding movement may cause the 
tracked feature to become occluded more quickly 
or to undergo a deformation that makes it harder 
to track.  
 
Other reasons for the performance difference 
could lie in the fact that the vertical movement is 
more erratic than horizontal movement. By 
comparing the dark lines in the graphs in figures 
5.10 and 5.11, one may observe that the vertical 
motion (Figure 5.10) is more varied than the 
horizontal motion (Figure 5.11). This is furthered 
by the examination of the local variance of the 
mouse movement in the horizontal and vertical 
directions (See Figures 5.12 and 5.13). The 
graph for the variance is much smoother in the 
horizontal direction than the vertical. This may 

account for why the trackers performed much 
better in the horizontal direction. 
 
In all of the cases examined, the range of 
movement was much greater in the horizontal 
direction. The average range for horizontal 
movement was 247 pixels, which spans 100% of 
the range of allowable motion in the x direction. 
The average range for vertical movement, 
however, was 88 pixels which only corresponds 
to 48% of the possible movement in the vertical 
direction. 
 
The addition of Kalman Filters did not improve 
the performance of either algorithm. On the 
frames in which the tracking algorithms were 
run, the system performed as before, but in the 
frames in which the Kalman Filter was used to 
estimate the position, the system recorded a 
estimated movement of approximately zero 
pixels [See Figure 5.11].  
 

Ideal vs. Actual Mouse Movement on Y-axis for 
Normalized Correlation without Kalman Filtering
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Figure 5.10 Even for the most accurate tracker, the normalized correlation coefficient tracker, tracking along the vertical axis was 
not as accurate as along the horizontal axis.  
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Ideal vs. Actual Mouse Movement on the X-axis for the 
NCC tracker Alternating with a 2D Kalman Filter 
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Figure 5.11 Performance of the normalized correlation coefficient tracker with 2D Kalman filtering and alternation. The thrashing 
exhibited by the graph is indicative of the zero change readings output by the Kalman Filter in odd frames.  
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Figure 5.12 The local variance for the true mouse movement in the y direction. 
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Local Variance for Vertical Mouse Movement
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Figure 5.13 The local variance for the true mouse movement in the y direction. The local variance was calculated with a sliding 
window of size 15. The graph for the horizontal movement (figure 5.12) is much smoother than that for the vertical movement which 
suggests that tracking in the horizontal direction is easier for the system since the movements are much less erratic and are of higher 
magnitudes.  
 
Tracking methods employing Kalman Filtering 
with alternation exhibited a higher error level on 
frames in which the Kalman Filter was used to 
estimate feature position [See Figure 5.14]. For 
frames in which the tracking algorithm was used 
instead of the Kalman Filter, the system was 
approximately 2 times more accurate. 
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Figure 5.14 For trackers using Kalman Filtering, the error 
for frames in which the Kalman Filter was used to estimate 
feature position was approximately 2 times larger than in 
those which utilized the tracking algorithm. The set of bars 
on the left side of the graph represent error in “non-Kalman” 
frames and the set of bars on the right represent errors 

encountered for frames in which the Kalman Filter was used 
for feature estimation.  
 
 
 
5.2 Results from Qualitative Experiments  
 
Tracker performance was comparable to the 
above results for the videotaped input as well. 
Both the LK tracker with no Kalman Filtering 
and the normalized correlation coefficient tracker 
with no Kalman Filtering performed well. The 
feature was never lost during the trials. The LK 
tracker exhibited minimal drift while the feature 
drifted from one eyebrow to the other when the 
normalized correlation coefficient tracker was 
employed. This drift corresponds to only 
approximately 5 millimeters on the subject’s 
face. 
 
The normalized correlation coefficient tracker 
with Kalman Filtering (2, 4, and 6 dimensions) 
did not lose the feature, but drift was more 
apparent. Drift in the 2D case was similar to that 
observed in the case without any Kalman 
Filtering, but the 4 and 6 dimensional cases 
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exhibited slightly more pronounced drift, as the 
feature drifted from one eyebrow to the other and 
then to the eyelid. This corresponds to 
approximately 10 millimeters. The drift was 
observed while the subject was using Eagle 
Aliens. This behavior is to be expected since the 
Eagle Aliens application is characterized by 
much more rapid movements than the spelling 
applications. Since the subject may be changing 
direction of movement suddenly, it is not 
surprising that the Kalman Filter yields poor 
estimates of feature location. 
 
When the LK tracker was used in conjunction 
with Kalman Filtering, the tracker lost the 
feature multiple times. In the 2-D and 4-D cases, 
the feature was lost twice per sequence tested 
and, in the 6-D case, the feature was lost an 
average of nine times on each sequence tested. In 
each of the cases where the feature was lost, the 
tracked region drifted from the eyebrow to the 
forehead, then off the face and onto the 
background. This corresponded to approximately 
40 millimeters of drift along the subject’s face. 
In addition to drifting along the face, the tracking 
performed by LK tracker with 4D and 6D 
Kalman Filters was jittery thereby making it 
difficult for the subject to generate mouse clicks 
by holding the cursor steady for one second.  
Drift was encountered while the subject was 
using both Eagle Paint and Eagle Aliens, both of 
which are characterized by faster movement than 
the spelling applications used in the trials . 
 
 
 
6. Conclusions and Future Work 
 
Based on the empirical evidence, the normalized 
correlation coefficient tracker is the best suited 
for this human-computer interaction real-time 
vision application. The algorithm, though not the 
least computationally expensive, provides a 
highly-accurate tracker. This is of the utmost 
importance for a system used as a driver for a 
pointing device. The more reliable the tracker, 
the less often the user will have to intervene to 
relocate the search area manually. This is even 
more important for a system such as the Camera 
Mouse, which is primarily used by individuals 
with disabilities. The fact that the algorithm is 
many times more expensive than the normalized 
correlation coefficient is mitigated by the fact 
that computer processing power is still doubling 
approximately every 18 months [17]. 
 

Though the Kalman Filter is applicable to many 
different tracking situations, the Camera Mouse 
is an application for which it does not always 
perform optimally, especially when the subject 
exhibited erratic movement. A conjecture for an 
explanation of this is that human movement may 
be neither smooth nor Gaussian. Based on the 
experiments performed, the Kalman Filter was 
not found to improve system performance 
significantly.  
 
Further improvements could be made upon the 
Camera Mouse system by augmenting the LK 
tracker with basic logic and checking for 
physical impossibilities. Occasionally, the 
location returned by the tracker is so far from the 
last position that it cannot be accurate. 
Incorporating such an outlier-rejection method 
would reduce the number of times a feature is 
lost. 
 
An additional problem encounter with the 
Camera Mouse is the occlusion of some features 
as the subject moves. The occurrence of this 
event can be reduced by the conscientious 
selection of a feature to track, as some features 
are better-suited to tracking than others. Of the 
features tracked in this study, the eyebrow 
proved to be the best, (see Section 5) but further 
testing may identify additional suitable features. 
Beyond this, however, it would be beneficial to 
develop methods to identify and rank features 
other than the one being tracked at any given 
moment. This would establish a framework for 
selecting a different feature upon which to base 
the tracking if the feature currently being tracked 
becomes undesirable (due to occlusion, poor 
lighting, or another factor). Tracking multiple 
features and selecting between them adds to the 
computational complexity of the system 
therefore one must take care to ensure the system 
is still able to operate in real-time. When 
complex error checking can be applied in real-
time, computer vision systems will have the 
accuracy needed to be stable and reliable HCI 
devices. 
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