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 The development of computer-aided terrain rendering has over the years 

been the necessity of an array of applications such as topographical mapping, 

surgical and medical aids, as well as simulations and entertainment. The goal of 

terrain rendering has been redefined over the past decade due to the 

introduction of systems capable of real-time terrain representation. The level of 

detail of this terrain however has always been bound by the hardware's 

capability to maintain a frame-rate considered acceptable by the end user. While 

processing power and specialized graphics units have aided in the ability to 

draw an increasing amount of data with a growing amount of detail, it has been 

the labor of the programmer to design a software model by which the least 

amount of necessary data is forced into the hardware processing. The ability of 

the software model to render graphics must manage the data efficiently while 

filtering if not modifying the data in such means that the result of the execution 

is a perfect reflection of a hypothetical model in which infinite processing and 

memory capabilities were allotted.   Infinite resources within a graphics model 

allow the suspension of disbelief to take place, and it is towards this goal that a 

designer's graphics model hopes to attain. 

 The ability to efficiently and accurately represent terrain and therefore 

most forms of 3-D data has been attempted through many different models, from 

basic culling and visibility techniques to whole terrain models represented as 

space partitioning models. Basic culling and visibility determinations allow 



objects or sections of terrain bounded by a geometric primitive to be removed 

from the graphics pipeline before rendering begins, but offer no data reduction 

for objects within the view of the user. [Morle00] Space partitioning allows in 

most cases a hierarchical tree structure of the environment in order to determine 

visibility and possibly distance from the viewer, but again offer little data 

reduction for the objects contained with those visible regions. These models fail 

on the basis of two requirements which are demanded by any true real-time 

terrain world: Expandable detail and scope. While the inclusion of these models 

offer the ability to define with rough boundaries the viewable region, this region 

itself will become unmanageable as the data set grows larger due to detail or 

scope.  

 Data reduction within the viewable region is first attempted with pre-

calculation in order to recreate a static mesh within fewer primitives, most likely 

to be triangles. Prior to the real-time rendering of the terrain, the error values, 

consisting of the difference between the average of two vertices and a third 

vertex, are measured against some constant C. If the error value is less than the 

constant C, then that vertex is considered non-essential, and therefore can be 

removed from the data set. The terrain rendering is then executed and the 

reduced data set will be rendered. This technique, however, fails to work on 

terrain that has a constant irregularity in height, in which no vertices will be 

removed. The memory requirements for the data set will also drastically 

increase, as triangles of irregular shapes are created. Data sets representing the x, 



y, and z locations are now necessary because the vertices are no longer 

guaranteed to be a constant distance apart.  A problem existing within pre-

rendering reduction is that these data points are physically lost within the data 

model, so that for applications demanding visual representation based upon 

constant separation, such as charting or measurements of coordinates, would be 

unable to easily find a data-set  readily available without costly interpolation.  

Further the data reduction may not occur in more trafficked areas, as such is 

within land simulation in which travel upon water-ways is not reasonable, and 

therefore rarely falls into the viewable area. [Savch00] 

 A model and management system is necessary therefore to both manage 

the data, in which data reduction can occur in the correct locations, and at the 

same time offers reasonable memory requirements and expandability of detail 

and scope. In order to manage a model for terrain rendering, it is necessary to 

create a scene graph model in which an order of data can be efficiently managed 

within the program. A scene graph is the hierarchical structure by which an 

entire tree- representing the virtual world- is organized for efficiency and easy 

management. This model allows not only the efficient rendering of terrain but 

also the management of data and objects within the world defined by our 

program. [Eberl99]  

The scene graph within this paper is derived from the class Entity, from 

which all other classes are derived from within the scene graph. The Entity object 

at its simplest level is a node object comprised of a parent, a child, and two 



siblings who share the same parent. This structure allows for a tree consisting of 

any object derived from the Entity class, and therefore allows the creation of tree 

of arbitrary children and siblings made up of a variety of objects, effects, and 

data.  The Entity class further requires all derived classes to define a Draw() and 

Kill() method in which the derived object will execute either its necessary 

commands during the life of the program, or will clean up its allocated memory 

and data as well as storing any pertinent information in secondary storage. This 

allows for recursive calls to Draw() or Kill()  to be made such that the entire scene 

graph will be rendered or destroyed.  The scene graph management requires 

very few rules, and such makes it easier and much more intuitive to work with 

that other scene graph managers such as Sun's Java3D scene graph design.  The 

major requirements are such that (A) An object of class MEngine or derivative is 

the root node, (B) An object of class MCamera or derivative is the first child of 

the root node, (C) An object of class Font or derivative is attached to the engine 

in order to output run-time information or debugging. Beyond the scope of these 

three rules, the structure of the graph is comprised of a combination of objects, 

which allows visual effects, weather and environmental changes, static and 

dynamic models, terrain, 3D music and sound effects, as well as keyboard and 

mouse input. Effects, such as sound or visual, usually are placed as the parent of 

a branch of objects which all share the common nature of the effect. Among all 

the objects a constant clock system as well as font engine are included in order to 



maintain synchronized decisions among objects as well as output debugging as 

well as user-useful information to the screen.  

 

  

Super Class Structure    Scene Graph Tree 

 

The hierarchical design of the tree also allows for as many children as needed to 

be tested for visibility through a bounding sphere test used upon the parent 

node. These parent nodes can quickly allow to determine the visibility of object, 

and because the visible() method within the Entity class can be overridden, it is 

possible to test for visibility using an type of geometric primitive in case the 

object is not successfully contained within a sphere.  The allowance of an 

arbitrary amount of children also allows for a large list of smaller objects to be 

contained within the parents bounding sphere, instead of using a binary, quad, 

or octree design in which a large grouping of objects will cause unnecessary tests 

of visibility because objects are forced to be children of objects of which they 

should rightfully be siblings.  This tree will house the model for the terrain 



renderer and the objects contained within. It is also possible to include just 

empty bounding nodes as a binary or octree structure in order to partition the 

space.  

 The model used for the terrain rendering was based upon the principle of 

"Level of Detail" or LOD. The concept of a LOD algorithm is to create a model by 

which the sharpest amount of detail is reserved solely for the closest terrain to 

the camera view.  The level of detail, or amount of vertices used per specific 

region, is inversely proportional to the distance the section of terrain is from the 

camera view. This level of detail, in most models, is bound by a lower limit of 

detail in which one primitive is used to draw the entire terrain, to the upper limit 

in which every vertex within the data set is being represented by a point on the 

map [Linds96]. A LOD algorithm therefore offers a distinct advantage over other 

data algorithms, in that the algorithm allows the data which is immediately 

being viewed in the near vicinity to be rendered in its fullest detail, while saving 

computation and rendering time by simplifying the data set in the distance. The 

reason why this concept is plausible is because any data rendered at a distance, 

when transformed through the models perspective matrix, will resolve to a much 

less detailed image. Objects therefore at a distance collapse there own detail, so it 

is wasteful for the graphics model to attempt to draw discarded vertices.  This 

model however, cannot be pre-calculated as could a pre-rendering vertex 

reduction algorithm. LOD algorithms must be dynamic, and the computation 

time to create this revised structure of the data set must still maintain a desirable 



frame rate. The LOD algorithm must also be scalable, in both detail and scope, 

and offer a reasonable requirement of memory. The final requirement when 

approaching an LOD algorithm is that it must be cost-effective to be able to 

integrate such features as lighting normals, primitive color blending, and 

texturing.  

 In exploring the world of LOD models, the search for such a model which 

coincided with the demands listed above was found in part within a quad-tree 

LOD algorithm originally explored by Stefan Rottger.[Rottg98] Rottger's 

algorithm was chosen as a base for a final LOD model because of its simplicity in 

design, and its ability to be easily integrated with other features of the scene 

graph. The description that will follow in this paper will pay close attention to 

the details of the author's modified quad tree algorithm, and will note those 

feature which were originally a part of Rottger's design, as well as those sections 

added or modified.  

 The concept of the quad-tree algorithm is the representation of a height 

field through series of recursive quads, for which the root quad encompasses the 

four corners of the height field as well as the center of the height field. By this 

description alone, a quad-tree then requires a height field of equal height and 

width, and in which the length of a side is an odd integer. Further more the 

recursive nature of the quad-tree, in which a quad is broken into four equal area 

quads, requires that the width of each quad be a power of two. Therefore the 

height field is bound to sizes 2^n + 1.  This ensures that a height field can be 



recursively split using quads until each vertex is covered by the side or center of 

a quad. This model therefore allows for the total representation of a data set if 

each of these highest level quads are rendered.  The most efficient choice for 

rendering these quads however is through the use of triangle fans. The triangle 

fan model with a quad has a center point located at the center vertex of the quad, 

and then up to 8 vertices to which it draws. Within the quad-tree model, the 

highest level of detail therefore is a quad that is 3 X 3 with the center point 

located at the location (2, 2). The triangle fan model therefore can, at highest 

resolution represent every vertex in the data-set.  

 The essential concept of the quad-tree LOD algorithm though is the 

function which decides when a quad requires more detail, and in what way does 

the quad tree split to give that new detail. The method by which Rottger's model 

determines the need for further detail is begun through the expression:  

 

L/Q < C 

 

In the above expression L is the distance from the camera view to the center of 

the quad; Q is the quad width, and C is some constant intended to control the 

amount of detail represented in the scene. As the value of C increases, the level of 

detail increases as the amount of quad's requiring splits increases. Since the 

change in detail level is on an order of the power of two, an increase in C causes 



an exponential increase in the level of detail.  Within the model of the modified 

algorithm, the expression above is expressed through the equation:  

 

Split Value = Distance / (Quad Width * Maximum Detail) 

 

  

While this equation will be modified slightly in the future, it reflects the division 

of terrain surrounding the camera view into concentric circles of levels of detail 

upon which the emphasis of the computation and rendering is placed upon the 

closest levels, and each outer level reflecting an exponential decay in level of 

detail.  The contents of Split Value is a positive real number, and by setting a floor 

value as the point of splitting, it is possible to know when a quad is in need of 

further detail. Since each width of a quad is a power of two the denominator in 

the split equation will always vary by a multiple of two from its higher or lower 

level of detail equation. This allows a model to be created, within this project, in 

which values from the split equation below 1.0 are considered in need of further 

detail, and therefore further split, but otherwise the values will be bound 

between an upper limit of 2.0 and a lower limit of 1.0. These values, while 

discarded for the moment, will be useful as data later in this project.  

 



 

Rings Of Detail  

 

 The process within Rottger's model as well as other designs is based upon 

the principle of rendering the absolute minimum vertices necessary while 

maintaining a certain resolution and frame rate. This has led the Rottger model 

to follow the principle of testing for a quad's necessity to split into further detail, 

and then to test within each child quad whether the split within this quadrant is 

necessary. This process allows only some of the quads within the parent quad to 

be split with more detail, which appears at its creation to offer a distinct savings 

in rendering, but in truth it introduces many additional disadvantages. One 

disadvantage is that extra distance calculations must occur when the quad is split 

to decide if the new child quads are within the area deemed necessary for further 

detail. This forces the child node to decide whether it should split further, 

represent its new vertices without split, or simply represent the vertices visible 

by the parent. Further, upon a split, by testing each child to see if it should reflect 

the new vertices or if it should maintain the detail of the parent, it removes the 



children's ability to know the detail level of each other, and therefore put that 

information into saving computation time.  

 In order to simplify the quad-tree model in order to save computation 

time, the modified Rottger algorithm uses a winding order quad-tree.  This 

model differs not in its decision to split, but in its action upon splitting. This 

project's algorithm, upon deciding a quad is in need of further, splits all four 

quads, without testing if the child should use the parent quad's detail level or its 

own. This quad is then called recursively to test if more detail is needed. During 

the process, a winding order, one through four, beginning in the northwest 

corner quad and winding clockwise is maintained to allow for a node's ability to 

quickly know the base value of up to 3 neighboring quads.  This splitting process 

is continued until the split value is found to be greater than one, or if the 

minimum quad width is reached- quad width of two.  

 

    

 

Full Data Rendering          LOD Algorithm Reduction 



 

 Within both this project's modified quad-tree algorithm and the model 

designed by Rottger, the level of detail algorithm creates a mesh in which distinct 

boundaries exist between the changes in detail. This effect is unnoticeable when 

rendered from a single view, but when a change of view occurs, or rather 

movement, detail on the mesh begins to pop in and out of view as the boundary 

defined by the split function passes across vertices. This function causes data 

previously unnoticeable to be instantly rendered, causing a popping on the 

screen as new data is introduced. While the quad-tree algorithm saves 

computation and rendering time, the popping effect makes the algorithm 

visually unbearable. This problem is solved through a technique called Geo-

Morphing, in which the data points are manipulated to slowly introduce the new 

detail to the screen. [Rottg98]  

 The incorporation of Geo-Morphing allows the interpolation of a height 

value based upon the split function. The problem with rendering without Geo-

Morphing,  is that when a certain distance threshold is met, at which point the 

split function returns a value below 1.0, the algorithm then splits the quad into 4 

child quads and renders 5 new height points per quad in which 4 of the new 

points are shared among the quads. These points however, when introduced 

immediately into the scene will cause a popping effect in which the new data 

points, if varying by a great amount from its parents' equivalent value. This 

effect can detract sharply from the illusion of full detail promised by the LOD 



algorithm.  To remedy this problem, Geo-Morphing manages the newly 

introduced by ensuring that there initial introduction value will not vary from 

the average of the two points across the line which the new point is introduced. 

The split function supports this easily by continually producing values within 

the range of 1.0 - 2.0. By subtracting from these values by 1.0, a weight average 

can be used on the new point so that at initial introduction, where the split 

function S is equal to 2.0, the weighted average of point pNew across parent 

points p1 and p2 would be computed as such: 

 

pNewActualHeight = pNew * (1 - (S-1.0) + (S - 1.0) * (((p1 + p2)/2)) 

 

 

 

This allows for the morphing of an individual vertex in such a way that the new 

data is dynamically introduced, and therefore appears to slowly grow out of the 

parent's data points. This technique is truthful to real world observations, in 

which more and more detail is slowly made visible as the distance of the object 

becomes closer and closer.  



 The use of Geo-Morphing however introduces a problem in the 

interpolation of new points of detail. If two quads are both rendering points at 

the same level of detail, there will exist a small difference in the values of their 

respective split functions, so that the interpolated values calculated by each quad 

for the shared points will be slightly different. This causes cracks in the terrain, 

which are considered unacceptable as a feature of an LOD algorithm.  This 

causes a revision of both the LOD algorithm implemented within this paper as 

well as most other LOD algorithms. In order to solve this problem, two passes 

through the LOD tree is necessary. The first pass, which is considered the 

tessellation pass, is necessary in order to calculate for each quad the split 

function value. This initial pass is necessary because each quad node must have 

during rendering knowledge of both their neighbors as well as their neighbors 

parents and children. The tessellation pass stores the values of the tree in a 2-

dimensional array in which 0 represents empty nodes, -1 represents parent 

nodes, and nodes containing values between 1.0 and 2.0 represent leaf nodes.  In 

order to keep cracks from appearing from Geo-Morphing, when a node draws its 

triangle fans, it guarantees it will use the greater split value between itself and 

the neighboring node which it shares the point with.  The rendering process of a 

node is therefore defined as such: 

 

A. Include Center, Northwest, Northeast, Southwest, and Southeast data 

points in triangle fan. 



B. Include North, West, East, and South data points if the respective 

neighbor is of an equal or greater level of detail. 

C. For each side, if the neighbor is of equal level of detail, use the greater 

of the two split function values to ensure continuity.  

D. For each side, if the neighbor is of a lesser level of detail, ensure that 

corner point of the node which is the middle point of the neighbor 

node is computed by using the split function of the neighbor 

 

The necessity of knowing the level of detail of a node's neighbor is therefore 

critical during the rendering process. This necessity is simplified and optimized 

by altering Rottger's algorithm by splitting a quad into 4 individual quads when 

the split value is dropped below the threshold. So within the model developed 

within this paper, a node always has critical information always about three of 

its neighbors because it knows that its siblings were split as well. This becomes 

important when features such as texturing, primitive coloring, and lighting 

becomes important facets in the model design.  

 One factor introduced into the concept of LOD algorithm for which Geo-

Morphing cannot solve is the case of extreme changes in height values within the 

height field. This can observed in the case where a quad's split value has recently 

fallen under the split value threshold, and in which the new data points do not 

yet change the shape of the surface. The problem however is that for larger and 

larger differences between the averaged value of the parent nodes and the final 



value for the new node, the greater the changes will appear for each step closer. 

So while Geo-morphing works well for introducing slight variations into the data 

field, it cannot handle extreme aberrations from the normal without 

compromising the guarantee of a fully detailed and realistic view.  

 The problem of extreme aberrations is specific to the type of data with the 

field. For natural representations of most geography, extreme changes in height 

do not normally exist. Even within such objects as waterfalls, cliffs, 

mountainsides, these drop offs generally only occur over many quad regions. 

Only in special conditions such as caves with spikes or some other unique case 

would a great extreme of height different would be found. However, in 

representations of data fields in which such constructs exist, the use of error 

calculations can reduce the effects of extreme height changes in those areas 

needed while minimizing the need for further detail in areas in which there 

exists little height variation.  

 The incorporation of error calculations is very easily done within both the 

Rottger model as well as the model designed within this paper. Error values are 

calculated in a 2-dimensional array in which each nodes error value is equal to 

the maximum error of its own node or one of its children. The error is calculated 

on the side and center of a quad using the equations: 

 

SideNodeError= Abs((CornerHeight1 + CornerHeight2)/2 - nodeHeight) 

 



CenterNodeError= Abs((CornerHeight1 + CornerHeight2 + CornerHeight3 + 

CornerHeight4)/4 - nodeHeight) 

 

 

 

The maximum of these errors is then compared to the errors of the children. The 

total maximum is then recorded in the error field and is returned to the parent 

node for comparison. The distinction between most quad-tree algorithms and the 

one presented within this paper is that because of the application of the quad-

tree model in the realm of realistic 3D terrain, it is not necessary to include error 

values when computing the level of detail of a quad. In circumstances that would 

necessitate error inclusion, the error calculations would be included in the split 

function through the multiplication of the denominator by the error value. 

Therefore by assigning a value between .1 and some maximum height difference, 

the split value can be modified to either draw more or less detail based upon the 

error condition. Error values in which there exist small error will  



naturally disallow further splitting of the quad because of the wastefullness of 

further calculations for only minor detail. The split function is therefor modified 

to incorporate error through the function: 

 

Split Value = Distance / (Quad Width * Maximum Detail * Node Error) 

  

 Within the LOD model described in this paper, the error value has been 

minimized because of its lack of accuracy to described the uniqueness of the new 

data point introduced. This is realized because of the incorporation of both 

primitive coloring as well as lighting effects. Therefore while the previous 

computation to find the error involved in introducing a new data point provided 

an optimized interpretation of height data, it does not take into consideration the 

possible introduction of lighting and material effects or primitive coloring that 

would have provided further detail.  Due to this lack of incorporation, it seems 

reasonable to further revise the split function so that it only offers more detail 

and never attempts to remove detail from a quad. This obviously means a higher 

number of triangle fans being drawn, but is a necessary step so that important 

detail in lighting and colors are not removed permanently. This newly revised 

function can be expressed as: 

 

Split Value = Distance / (Quad Width * Maximum Detail * (1 + Node Error))  

 



 The use of textured primitives within the LOD algorithm can only supply 

a minimal amount of variation across the terrain. Even the use of multiple 

textures offers only a small number of possibilities when attempting to create 

unique and genuine terrain. The terrain transitions across different textures also 

create jagged boundaries from which the illusion of reality is broken. Multi-

texturing, or the use of multiple passes to create primitives mixed with various 

textures still only offers a limited number of variations as well as causes severe 

performance loss. To combat this, a technique known as Geo-mipmapping is 

used to create a realistic lighting and color components to offer an almost 

unlimited combination of terrain types based on only one texture. The 

integration of color is used through the creation of a color map that is of the same 

size as the height map. Desired colors are therefore filled in to represent the 

expected colors as various height points. These colors are then incorporated and 

blended against the texture to create fluid and seamless transitions between 

different mediums of terrain. Lighting normals are also computed and used in a 

similar fashion to create realistic lighting effects based upon their angle towards 

the light source. Both color and lighting though suffer from the same problem of 

height points in LOD algorithms in that the transition of one level of detail 

causes not only the sudden appearance of new "physical terrain," but now also 

the appearance of new colors and shades of lighting.  

These problems are remedied within this project in a similar fashion as 

height points, in that their values are weighted against the average of existing 



points, so that their new detail is slowly introduced into the scene. Lighting 

however suffers from the problem that the vertex normals in the field computed, 

as being the average of the face normals of the 8 triangles sharing the vertex, will 

incorrectly represent the lighting normals of a single vertex, based upon the 

nearest 8 points, instead of the computed normal based on the 8 points that the 

triangle fan will actually draw. The color and height components do not suffer 

from this problem because the height and color values at each vertex are static no 

matter what size the quad is, but with the normal component, each vertex will 

have a different normal based upon its current level of detail. This therefore 

makes it necessary for either (a) compute the normals dynamically, or (b) create 

multiple normal maps of the vertex normals at each level of detail. Since it is 

extremely costly to compute normals during rendering, it then is most efficent to 

create multiple maps of the same board, but with the vertex normals computed 

based upon their level of detail. This method is natively used by OpenGL and 

other graphics API's for producing better texture maps, and so it is used in this 

project to correctly incorporate lighting into the project. The correct normals, like 

the color and height components, will be averaged against pre-existing normal 

values in order to slowly introduce the new normal values into the scene.  

 All current LOD algorithms suffer from limitations either through 

computation requirements or memory requirements. The quad tree algorithm is 

limited in the depth of its detail by the amount of values stored within the height 

field. While creating a limitation in the depth of the height field, it offers very 



little limitation in way of memory requirements as well as processing 

requirements. Since the LOD algorithm ensures that objects of a certain distance 

away will be rendered and computed in less and less detail, height maps of 

greater and greater size will not strain the algorithm's speed, because of its 

ability to disregard the detail of distant objects. If the transition from one level of 

detail to the next higher level produces an exponential increase in detail, it is fair 

to say that for each level further introduced into the map will have a total 

rendering cost that is exponentially less than the previously lowest level. The 

LOD algorithm’s maximum detail however creates a barrier that is 

insurmountable within this model. If it were possible to change the source of 

data however from a height map in memory to function that calculated the 

points during run-time, it would in theory be possible to have infinite detail. 

Such functions as sine waves and noise functions have been sources for height 

values in other models. Other mathematical models however, such as fractal 

geometry, can offer the possibility of creating height maps that appear to have a 

natural terrain flow. Fractals also have the property of self-similarity, and 

therefore could be used to divine deeper and deeper detail within the scene.  This 

type of infinite detail however would require that there be no memory 

limitations, which would demand that for each quad being rendered, it would 

have to compute the tessellation of its neighbors in order to have knowledge of 

their level of detail. This would be a computational strain on the processor.  



 The modifications within this project's algorithm as opposed to other LOD 

algorithms currently available is the move towards simplicity in design in order 

to stream-line lighting, coloring, and other effects calculations. The winding 

order design allows knowledge of neighbors’ detail, and therefore allows the 

optimization of computations. The integration of lighting and primitive coloring 

through geo-mipmapping allows for the ability to slowly introduce new data, 

whether it is height points, color values, or shadows, into the visual experience.  

Various optimizations can still be incorporated into the LOD model, including 

storing calculated height points in a temporary array. The creation of even the 

most inefficient of LOD models however far surpasses a complete rendering of 

the data points as the size of the height map increases. Within a model created 

for this project, a non-LOD algorithm renders approximately 500,000 triangles 

within the frustum at under 1 fps, while the LOD algorithm rendered a similar 

scene with similar detail with only 1,000 triangles at 50 fps. This type of 

reduction is a major improvement in managing data. The model proposed within 

this paper allows for the rendering of world limited only by memory available.  

This allows for the bulk of the computational time to be reserved for other 

application related tasks such as sound, artificial intelligence, and physics. The 

stream-lining of terrain representation is essential if a realistic 3D world is ever 

attempted.  
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