

Boston College
Computer Science Department

Senior Thesis 2003
Hiroyuki Hayano

Distributed Data Storage: Archiving Over Networks
Prof. Elizabeth Borowsky

 1

Distributed Data Storage: Archiving Over Networks

Hiroyuki Hayano
Computer Science Department

Boston College
Chestnut Hill, MA 02467
Email: hayanoh@bc.edu

1. INTRODUCTION

1.1 Background

In the age of information technology,
computers have become one of the most
indispensable components of our lives. We use
computers at home, school, office and virtually
anywhere else to take advantage of the fast
computational power and the massive data
storage abilities. Due to the efficiency and
capabilities that computers can provide, we have
become so dependent on them – in fact, too
dependent that information stored in computers
has become not only massive, but also vital.
Loss of such information may cause
irrecoverable damages to computer-regulated
systems and databases and inflict catastrophic
problems.

To avoid permanent loss of data, one may
choose to back up the data on multiple media so
that even if there is a data loss in one of them,
she can recover from others. However, what
would she do if all of the media get destroyed?
Say, she stores all the disks and tapes in a safe
place in her office so that she feels invincible,
but an earthquake or an inferno destroys the
office and everything within. She must have felt
secure for having backed up her vital data, but
even those backups are gone now – she is in a
big trouble.

In such computer-dependent society as this,
there are services that provide data storage and
maintenance to ensure that no data loss occurs,
but they are usually very expensive for they
require pricey hardware and software
modification for specific data types. A CEO of a
.com company may look for a better solution for
remotely backing up crucial information, and
that’s when the distributed data storage system
comes into play.

1.2 System Overview

In essence, distributed data storage (DDS)
takes the data that needs to be backed up, splits it
into smaller packages and distributes them to the
personal computers through the broad web of

network. When the data needs to be recovered,
the system retrieves the mirrored packages and
rebuilds the exact copy of the data. DDS makes
use of unused space that personal computers
have; in current high-tech industry, computers
manufactured for personal uses have at least tens
of gigabytes, and unless the user is heavily
multimedia-oriented, there are at least a few
gigabytes to spare per computer. If the unused
portions of hard disks in hundreds of thousands
of personal computers are put together, that can
create a virtual disk with terabytes of capacity.

The personal computers that are candidates
for hosting data to be backed up must be linked
together through a network via which the
packages are delivered. Hence, the speed of the
network becomes vital in establishing an
efficient DDS. Depending on how many pieces
into which DDS splits the data, the size of each
package may be substantially large; therefore the
system must take advantage of the high-speed
networking media that are available today.

The data packages are distributed among
and retrieved from remote computers that are
serving DDS. Hence, even if the hard drive or
the medium that contains the original data
collapses, the data is still alive at remote
locations and can be recovered as long as the
data originator has the key to collect all the
packages.

1.3 Outline of the Paper

This paper is a presentation of a suggestive
design with which DDS may be implemented.
The rest of the paper is organized as follows:

¾ System Design (Section 2) - This is the core

of the paper describing a possible
implementation of DDS. It presents
assumptions that are made upon creation of
the system as well as a target application,
and the rest of the section is divided into
subsections describing the more technical
details of the system. The subsections
include a description of the four basic
components of DDS and a scenario of how

 2

the system works, showing the actual
interaction between the components for a
normal operation of DDS.

¾ Future Work (Section 3) – DDS discussed

in this paper is far from actual application
and still faces countless problems. This
section suggests possible solutions to such
problems and addresses the issues that need
to be further investigated.

¾ Conclusions (Section 4) – The project is

still in progress, but this section covers
anything that can be stated from what has
been done so far.

¾ Related Work (Section 5) – There are

previous works done in the similar field, and
this section presents some of them that relate
to DDS in one way or another.

** The DDS is coded in Java for this project

and some notes on the actual codes as well as the
entire listing of the program are attached at the
end of this paper.

2. SYSTEM DESIGN

2.1 Assumptions

There are several assumptions that are made
upon construction of DDS prototype in order to
simplify the structure. These assumptions may
be dismissed as the design of the system
improves after revisions and further studies, but
for now, they are as follows:

Assumption 1 – The network through which the
packages are delivered is fairly reliable without
any failures.

Assumption 2 – There are three types of servers
in terms of reliability:

Very reliable – absolutely no downtime.

Somewhat reliable – almost no downtime,
and even if it does go down, it comes back
up in minutes.

Not reliable – frequent downtime, and once
it goes down, there is no guarantee of
coming back up. This can be a personal
computer that shuts down (or goes off-line)

frequently, unexpectedly and for a long
duration (i.e. hours every day).

Assumption 3 – The data that has been backed
up does not require to be updated. That is, no
data re-write is necessary once it is distributed.
As for now, DDS is intended for backup
purposes only for simplification reasons.

Assumption 4 – The owner of the original data
is the only one that requires access to the backup.

Assumption 5 – Parties other than the owner of
the original data may have an access to the
distributed packages and hence the entire data,
but it is not necessarily intended by the system.

Assumption 6 – There is a sufficient number of
personal computers with sufficient amount of
available space participating in DDS to serve the
data.

Assumption 7 – There is a sufficient number of
“somewhat reliable” servers participating in
DDS.

Assumptions 1 and 2 are made to block out
any sort of network errors that may occur, 3 thru
5 to simplify the DDS prototype, and 6 and 7 to
ensure that DDS will not encounter an
interminable search for resources (i.e. the
computers to which the packages are delivered).
These assumptions may be removed as the
research advances and the DDS becomes more
immune to errors and network failures.

2.2 Target Application

The target application of DDS needs to be
drawn with the above assumptions in the mind.
The first two assumptions are made simply for
reliability purposes, but the third one is critical
for deriving the target application. Since the
application cannot re-write the data once it is
distributed, the application cannot update or
modify the data. This narrows the target
application to be something that serves simply
for storing historical data that does not get
altered once it is created; it must be a read-only
application.

The fourth assumption disables the sharing
of the data; hence the target application is
intended for non-public information.

When packages are passed from a computer
to another on a network, there are always
security holes through which a hacker can access
the information. This paper designs and builds

 3

merely a prototype of DDS, and security issues
are not the main focus. The target application,
therefore, must not require a high degree of
security.

Considering all the restrictions, one possible
application of DDS is archiving. Back in the
days when newspapers and magazine articles
were stored only on microfiches, all they needed
were thin plastic films to be bundled up and
stored in a safe place. Today, as multimedia
presentations and high-resolution graphics along
with massive volumes of information become
predominant means of communication, there
often is information that cannot be stored on
physical media such as sheets of paper and
videotapes. The enormous data can, however, be
stored in digital archives, retaining all the vital
information necessary for future references.
Businesses that are heavily multimedia-oriented
may wish to backup the digital archive to prevent
from permanent loss of information in case
anything should happen to their electronic
database, and such circumstances call for a great
application of DDS.

2.3 System Components

Now that we have established the
assumptions and possible target application, we
dive right into the core of the system design.
There are four basic components to DDS:

¾ DataOwner – The owner of the original

data that uses the DDS service to backup
data. It splits the data into a number of
smaller packages and sends them to
Managers upon creating a backup. It has the
capability of collecting the packages from
the Managers as well as terminating the
DDS service, and it does not have to be
connected to the network unless it is trying
to distribute or collect the split packages.

¾ DataHost – A “not reliable” personal
computer that receives and stores the split
data. It can store packages for multiple
DataOwners as long as its capacity is not
met, and pings the Manager when it is up
and running.

¾ Manager – A “somewhat reliable” server
that serves as an intermediary between the
DataOwner and a group of DataHosts. It
keeps track of a number above threshold of
DataHosts alive that host the packages it is
responsible for, and while maintaining the

distributed data, it pings the ServiceProvider
to indicate that it is up and running.

¾ ServiceProvider – The “very reliable”
administrator of DDS, and it maintains lists
of DataOwners, DataHosts and Managers
participating in the system. It provides
pointers (or IP addresses) to necessary
number of components whenever
DataOwners or Managers request for
Managers or DataHosts, respectively. It
keeps track of how much drive space each
DataHost has available for DDS, as well as
which Managers are serving a DataOwner
and which ones are not. It maintains three
lists – one that contains information on all
DataHosts and their available storage
capacities, one that contains information on
the Managers and the number of
DataOwners they are serving, and one that
contains information on DataOwners using
the DDS service.

A single instance of data backup involves

the ServiceProvider, one DataOwner, a number
of Managers equaling the number of packages
DataOwner generates, and as many DataHosts
required to keep their alive count above a
threshold at all times. We will give you a
scenario describing how a data actually gets
backed up in the next section.

2.4 DDS At Work

DDS has five overall states per instance of
life cycle – that is, for every instance of
DataOwner (Figure 2-1). Beginning with the
Start state in which the ServiceProvider is
listening for incoming connections, the system
enters the Pre-Init state when a new Manager or
a new DataHost makes a connection to the
ServiceProvider for its initial participation in the
DDS. The ServiceProvider continues to accept
new Manager/DataHost participants until a
DataOwner makes a contact to use the service.
In the Init state, the DataOwner splits the file to
be backed up and distributes the packages to the
Managers. The Managers then distributes the
packages to the DataHosts, driving the system
into the Maintain state. In this state, the
ServiceProvider, the Managers and the
DataHosts work together to ensure that all the
packages are kept alive and available, and when
the number of either the Managers or the
DataHosts that are alive goes down below a
threshold, the system goes back to the Init state

 4

Figure 2-1: The states of DDS

Figure 2-2: The Pre-Init State

to replace the “dead” Managers/DataHosts with
ones that are alive.

While the system is in the Maintain state,
the DataOwner can make a request to retrieve the
distributed packages and rebuild the original
data. The system goes into the GetData state in
which the DataHosts sends out the packages and
the Managers relay them back to the DataOwner.
When the DataOwner feels that the DDS service
is no longer needed, it can call to terminate the
instance of the service. In the Terminate state,
the DataHosts dump the packages that belong to
the terminating DataOwner, and the Managers
likewise make themselves available to manage
packages for other DataOwners.

Now that you know how the system works
in a nutshell, in the following subsections, we
will explain what the DDS components are doing
in each state and describe the actual interaction
between the DataOwner, DataHosts, Managers
and the ServiceProvider.

2.4.1 Start

The ServiceProvider must be running at all
times regardless of the lifecycle of the system,
and in the Start state, it is listening for incoming
connections while maintaining the three lists
described in the previous section.

2.4.2 Pre-Init

The system starts off and enters the Pre-Init
state when either a new Manager or DataHost
presents itself to ServiceProvider that it is ready
to serve the DDS (Figure 2-2).

1. Manager contacts the ServiceProvider,
giving its address and the number of
DataOwners it is willing to serve.

2. ServiceProvider accepts the Manager as a

new Manager, puts it in the list of
Managers that is presorted by the number
of DataOwners it can serve, and assigns a
unique ID to it. The first Manager in the
list has the greatest number of
DataOwners it is willing to manage for.

3. DataHost contacts the ServiceProvider,

giving its address as well as its initial
capacity it is willing to provide for the
service.

4. ServiceProvider accepts the DataHost as a

new DataHost, puts it in the DataHost list
according to the available capacity and
assigns a unique ID to it. The first
DataHost in the list has the most capacity.

2.4.3 Init

The system keeps on accepting new
Managers and DataHosts until a DataOwner
comes into the play, at which time the state
changes to Init (Figure 2-3). In this state, the
DataOwner splits the data to be backed up,
requests the SP to give a certain number of
Managers, and distributes the packages to the
Managers. The number of Managers equals the
number of packages the data is split into, and
each Manager receives two consecutive
packages. Each Manager is held responsible for

 5

Figure 2-3: The Init State

two packages, and this allows for two copies of a
single package to be distributed to different
Managers – this is done in protection against loss
of data due to a failure in a Manager, just as the
Petal system does [1]. If a Manager dies or loses
the two packages it had, those packages can be
retrieved from other Managers maintaining the
same packages.

In Init state, the Managers that have been
assigned to a DataOwner make requests to get
DataHosts from the ServiceProvider and
distribute the packages to them. Here, the
threshold defined by the Manager determines the
number of DataHosts per package. DataHosts
are not reliable as indicated in section 2.3, hence
mirroring is used to make sure there are certain
number of copies of packages available among
DataHosts at all times. In essence, the threshold
is the minimum number of mirrors available at
any given time.

1. New DataOwner initializes by dividing
the data into N packages. It gives the
name of the original file to the
ServiceProvider and asks for N Managers.

2. The ServiceProvider picks N Managers

from the beginning of the Managers list
and gives the addresses of the Managers
to the DataOwner. The ServiceProvider
resorts the Managers list using the binary
search according to the number of
DataOwners the Managers can still serve.
Meanwhile, the ServiceProvider assigns a
unique ID to the DataOwner.

3. The DataOwner, after receiving the IP
addresses to N Managers, opens socket
connections to them and sends two of the
split packages to each of them.

4. When the two packages are successfully

received, the Manager sends an ACK to
the DataOwner.

5. The Manager asks the ServiceProvider for

M DataHosts, where

M = 2 * T, where T = threshold for the
number of DataHosts
per package.

6. The ServiceProvider gives the IP

addresses of the top M DataHosts to the
Manager. Note that based on Aussmption
6, there are enough DataHosts with
sufficient drive space to accommodate the
Manager. The ServiceProvider resorts the
DataHost list using the binary search
according to the available capacity that
each DataHost has.

7. The Manager opens socket connections to

the give DataHosts and distributes the
packages to them. Each DataHost hosts
one package for a single DataOwner.

8. Upon receipt of the package, the DataHost

sends an ACK to the Manager, and this
completes the Init state of the system.

2.4.4 Maintain

Once the distribution of the packages is
complete, the system enters the Maintain state
(Figure 2-4). The figure shows the state in
which there are three packages total (P1, P2, P3)
with the threshold value T = 3. The shown
DataHosts all belong to the Manager managing
P1 and P2. In this state, the DataHosts, the
Managers and the ServiceProvider exchange
messages to ensure that the distributed packages
are available at all times.

DataHosts ping the Manager to indicate that
they are alive while Manager keeps count of the
number of pings that it receives from each
DataHost in a set period of time. If the number
of pings goes below the set threshold indicating
that the number of living DataHosts is becoming
critical, the system goes back to the Init state to
give the Managers more DataHosts to fill the
gaps.

 6

Figure 2-4: The Maintain State

Figure 2-5: The Get Data State

In the Maintain state, Managers also ping
the ServiceProvider to indicate that they are still
up and running. The ServiceProvider, similar to
the Managers, keeps track of the number of the
pings received from the Managers, and if a
Manager seems to have gone down, the system
goes back to the Init state and the packages
managed by the dead Manager are retrieved and
redistributed to new Managers.

1. The DataHost pings its Manager every set

period of time. The Manager keeps track
of the pings it receives from each
DataHost, and if the total number of pings
from all of its DataHosts goes below the
threshold T, then the Manager asks the
ServiceProvider for more DataHosts. The
Manager retrieves its two packages from
the DataHosts that are alive and
distributes them to the new DataHosts.

2. The Manager pings the ServiceProvider
every set period of time. The
ServiceProvider keeps track of the pings it
receives from each Manager, and if it is
determined that a Manager is no longer
alive, it retrieves the packages that were
managed by the dead Manager and
redistributes them to another Manager in
the Manager list.

3. Periodically, the DataHost contacts the

ServiceProvider and informs it of its
current capacity. This helps the
ServiceProvider maintain the updated

capacity of all DataHosts, enabling a more
accurate tracking of the DataHosts.

Whenever the pings are sent to the

Managers and the ServiceProvider, the
information on the IP address is updated. This
dynamic update ensures that all of the Managers
and the DataHosts are never lost in the broad
web of network – they can be located as long as
they are up and running.

2.4.5 Get Data

When the DataOwner requests retrieval of
the distributed packages to reconstruct the
original data, the DDS enters the Get Data state
(Figure 2-5). DataOwner sends the retrieval
request to the ServiceProvider, and the
ServiceProvider relays the message to the
appropriate Managers to collect the packages
from their DataHosts. The Manager checks and
sees if the two packages received from the
DataHosts are intact, and if they are, sends them
up to the DataOwner. When the DataOwner
successfully receives the requested packages, the
system goes back to the Maintain state.

1. The DataOwner contacts the

ServiceProvider and makes a retrieval
request. The DataOwner must wait while
the packages are being delivered.

2. Upon receipt of the retrieval request from

the DataOwner, the ServiceProvider
determines which Managers are managing

 7

Figure 2-6: The Terminate State

packages for the DataOwner and tells
those Managers to collect packages.

3. The Manager determines which

DataHosts are hosting the requested
packages and tells them to send the files.

4. The DataHost sends the appropriate

package to the Manager.

5. If the received packages are intact, the
Manager relays them up to the DataOwner
that has been waiting for the package
delivery. Once the DataOwner receives
all the required packages, it proceeds to
rebuild the original file.

2.4.6 Terminate

The DataOwner calls termination of an
instance of DDS when it no longer needs a
distributed data backup (Figure 2-6). It sends a
terminal message to the ServiceProvider that
triggers the termination of this particular instance
of the service.

In this state, the DataHost purges the
package it was holding for the DataOwner and
notifies the ServiceProvider with the new space
capacity. The Manger also notifies the
ServiceProvider that its duty to serve the
DataOwner has been terminated and that it now
has one more slot to manage for a new
DataOwner.

Although this instance of the data
management has been terminated, the DDS itself
is not terminated. The ServiceProvider is still
running and maintaining the three lists, and other

DataOwners along with Managers and
DataHosts are still active.

1. When the DataOwner is ready to
terminate the data backup, it sends a
termination request to the
ServiceProvider. The ServiceProvider
marks the DataOwner dead in its
DataOwner list.

2. The ServiceProvider determines which

Managers are managing packages for the
terminating DataOwner and sends them a
“terminate” message.

3. When the “terminate” message is

received, the Manager likewise sends the
“terminate” message to all of its
DataHosts.

4. The DataHost purges the package that it

was holding for the terminating
DataOwner and notifies the
ServiceProvider with its new drive space
capacity. The ServiceProvider, upon
receipt of the new capacity, updates the
DataHosts list.

5. Manager updates its managing status by

making one slot available for a new
DataOwner. It notifies the
ServiceProvider of its new capacity, and
the ServiceProvider updates and resorts its
Managers list accordingly.

We have just covered the basic lifecycle of

the DDS ignoring any possible errors or any sort
of problems that may arise. In the next section,
we will look at some of the possible problems
that DDS may encounter and how they may be
prevented or fixed.

3. FUTURE WORK

3.1 Problems and Possible Solutions

The DDS presented here has only been
idealized and nothing of great extent has been
made concrete or even tested out. Again, the
design needs much more reconstruction and
revision before it can actually serve its roles, but
here are some of the obvious problems that the
system currently faces.

3.1.1 Message Passing Failure

 8

The DDS spends most of its time in the
Maintain state, and the message passing becomes
vital in retaining all of the packages. The system
requires the network to be error-free just as
assumed in the earlier section (Assumption 1)
because if the pings do not get passed on
successfully, then more and more of the
Managers and the DataHosts need to sacrificed
to cover for the incompetent ones. Since the
DDS is intended for a large volume data backup,
the demand for frequent package transfers would
consume a great amount of resources.

Now, let’s say that the network is
completely free of errors as assumed and that the
message passing is always successful as long as
they are executed. This seems to prevent any
waste of the resources caused by unsuccessful
message passing, but needless to say, things can
still go wrong. Assumption is that the only “very
reliable” component of the system is the
ServiceProvider and that the Managers are not so
reliable. What happens if the Manager goes
down for a prolonged duration of time? If the
ServiceProvider determines that the Manager is
dead, then it will start retrieving all the packages
that the dead Manager was responsible for and
redistributes them to a new Manager and
DataHosts. Again, this consumes a lot of
resources, and in this world of scarce resources,
such event is not favored at all.

The simplest solution to this problem is to
increase the time the ServiceProvider or the
Managers wait for the pings. This modification
in both the ServiceProvider and the Managers
allows for a multiple failures of message passing
and a longer downtime of the servers. As long
as the DataHosts or the Managers can send out
pings before the wait time expires, they are
deemed alive and hence no extra
Managers/DataHosts are summoned for
unnecessary service.

A downside to this solution is that it makes
the DDS less reliable. What if the
ServiceProvider is waiting for a long time for a
ping from a Manager thinking that it is still alive,
while in truth that Manager is dead and not going
to come back up soon? While the
ServiceProvider waits for the ping from the dead
Manager, the DataOwner associated with the
Manager may not be able to retrieve all of its
packages.

The optimal wait time for responses differs
depending the reliability of the network and how
long each Manager or the DataHost goes down
on average, and the optimization is possible only

through testing and/or modification of the system
to allow for dynamical update of wait time.

3.1.2 Frequent Downtime of the DataHosts

One of the purposes of DDS is to make a
good use of unused drive spaces in any computer
with network capability, but one must always
remember that they can go down as frequently
and as long as they want. While utilization of
personal computers is what makes DDS unique
and distinguishable from other distributed file
systems that many predecessors have worked on,
it is also one of the biggest challenges that the
system faces.

The DDS must prioritize reliability to serve
its purposes, and for that reason it creates
multiple mirrors to which a package is
distributed. One can expect the number of
mirrors for a single package to be large in order
to complement for the frequent downtime of the
DataHosts, but once again, this can cause
inefficiency in resource allocation. The size and
the quantity of the packages would be
substantially large, and if the system were to
make many copies of them and distribute them to
the DataHosts, the terabytes of virtual space may
run out in no time. Again, experiments and
simulations as well as a dynamically updating
algorithm are necessary in order to minimize the
number of mirrors allocated for a single package
while achieving a superior reliability. The
applicability of DDS is still questionable, and it
must be considered if it is worth the hassle to use
such unreliable servers to backup data.

3.1.3 Data Transfer Efficiency

When a Manager goes down for a long time,
the ServiceProvider creates a replacement of the
Manager and the system goes through the entire
process of distributing the data to new DataHosts
through the new Manager. Although the
assumption is that the Managers are fairly
reliable and do not go down frequently and for a
long duration of time, multiple failures among
them can cause transfers summing up to tens of
hundreds of gigabytes through the network. The
speed of the connections networking the
DataHosts may not necessarily be 1 Gbps, and
such an enormous data transfer is too much of a
burden on the network that links the DataHosts
to the Managers and therefore must somehow be
lightened.

One solution is to begin the redistribution of
the lost files with a lower threshold; that is, if the
required number of DataHosts for a package was
5 with the dead Manager, cut it down to a lower

 9

number like 2 when the packages are being
redistributed. If the old Manager comes back up
eventually, then the 2 new DataHosts can merge
with the original DataHosts – which only takes
an update in the information tracked by the
Manager. This will increase the number of
DataHosts associated with the Manager well
above the threshold, giving a “grace resource” to
the Manager. And, if the former Manager does
not come back up for a long time after the
redistribution of the packages, then the threshold
can be increased gradually and thereby send the
packages to more DataHosts.

In this solution, the timing at which the
ServiceProvider increases the threshold becomes
vital. If it increases too rapidly, it could be a
great burden on the network, and if it is too slow,
then the packages may become unavailable or
get lost with the limited number of unreliable
DataHosts. Further research must be conducted
in order to optimize this solution.

3.1.4 Invasion of the System by Outsiders

So far, simple message passing keeps all the
components of the DDS intact. The unique ID
provided by the ServiceProvider upon
initialization and pre-initialization establishes the
identity of each of the components, and that
facilitates the message passing and tracking of
who is alive and who is not. While this allows
for the simple design described in this paper, it
leaves so many security holes for network
hackers. For example, some random computer
on the network can fabricate an ID that matches
the one ServiceProvider generated, and in effect,
enter the system without anyone knowing it. If
the intruder is cynical enough, he may very well
choose to execute the terminate command and
wipe out all the backed-up data.

Doing anything on the network essentially
creates an environment that is never 100%
secure, yet at least some considerations must be
given to security issues in order for the system to
be realized. Some encryption methods involving
public and private keys may be used to prevent
any outsiders to enter the system, but this is an
area that can be discussed in another paper
dedicated solely to it. As of this point of the
research, the ServiceProvider makes use of a
unique key associated with an ID, and every time
the ServiceProvider receives a command, it
checks if the key provided within the command
matches the ID. This, however, is a very weak
form of security, and the security issue must be
considered to a greater extent.

3.1.5 Recovery of Data
The DDS serves its purpose when it

successfully rebuilds the data that the
DataOwner loses. In order to rebuild the data,
DataOwner only needs to call for retrieval of the
distributed packages. But under certain
circumstances a problem may arise; as
mentioned in the introduction of this paper, the
system should be able to recover the lost data
even if everything is wiped out on the
DataOwner’s side. But then, how is the
DataOwner supposed to re-link itself with the
ServiceProvider to execute the retrieval call if
they have lost everything, including the ID and
the key?

The simplest solution is to have the unique
ID and the key stored in a very safe place. As of
now, all it takes for the ServiceProvider to
recognize a DataOwner is through the ID and a
matching key, so as long as these two are kept in
tact, then the ServiceProvider can retrieve the
packages for the Owner. However, just the fact
that the ID and the key must never be lost defeats
the purpose of the DDS, with which one should
be able to rebuild the data no matter what.
Moreover, a security issue arises. Similar to the
problem discussed in 3.1.4, what if an outsider
disguises as a DataOwner, requests the
ServiceProvider to link the Managers to him and
rob the entire data? If the ID and the key are so
easy to carry around, then it would not be too
difficult to replicate them. To prevent such
intrusion, the ServiceProvider must be able to
recognize and verify only the genuine
DataOwner. A better method of secure client
recognition is another area that needs to be
researched further.

3.1.6 Dependency on the ServiceProvider

In the DDS, there is only one
ServiceProvider that does the resource allocation
and component tracking. Although, for this
project, the assumption is made so that the
ServiceProvider is free of errors, it does not work
out that nicely in reality. If the ServiceProvider
goes down for any reason, all the distributed data
is lost and hence the system becomes nothing but
a resource-eating ghost.

To prevent any permanent damage to the
system, the ServiceProvider may be replicated or
backed up for emergency needs. This, however,
does not guarantee that all of the
ServiceProviders will never go down, and
moreover, results in more consumption of the
limited resources. As the number of
ServiceProviders increase, so does the amount of

 10

overhead associated with it. The mirroring of the
ServiceProvider may be too much of a burden to
take, and this too must be considered in depth.

3.1.7 Network Speed

The system attempts to take a great
advantage of today’s technology that allows for
faster transmission speed in the network.
However, the DDS may be overestimating the
networking capability – many computers are still
using dial-up modems to connect to the network,
and such slow connections may be too
inadequate to handle the massive data transfers
that the system requires.

The prototype of the DDS was tested out on
the campus network connected by Ethernet, and
the data transfer rate was right around 1 Mbps.
With this speed, the system seemed to run
without a problem, but if the DataHosts were to
be connected through 54 Kbps modems, it would
have taken too much time for the distribution and
the retrieval of the packages.

Given that the system deals with a massive
amount of data and that the network bandwidth
is not always large, the worthiness of using the
private computers as DataHosts may be
questioned.

3.2 The Next Step

The first three problems presented above
require repeated experiments and careful
optimization to solve. In order to conduct such
experiments and derive a more solid
approximation of numbers, we must take the
idealized model and the system prototype and
keep on modifying and testing them with a
larger, more diverse group of networked
computers. Only then, we can start estimating
the efficiency of the system and therefore
determine the worthiness of the DDS.

Meanwhile, we must also construct a good
algorithm that dynamically optimizes the system.
Given that the performance of the DataHosts are
unpredictable and that it changes from a second
to the next, dynamic optimization will play a key
role in making the DDS applicable or merely
useful.

As far as the security issues are concerned,
we may use preexisting encryption methods
when it comes to the actual implementation of
the system, but we may leave the details up to
those who specialize in the filed.

The technological problems, such as those
that are mentioned in 3.1.6 and 3.1.7, will always
be there no matter how well we try to cope with
them. Perhaps in the distant future there will be

absolutely error-free machines and networks that
can solve these problems, but as for now, we
must work with what we have.

So there are numerous problems associated
with the implementation of the system, but we
must keep in our perfectionist minds that what is
discussed in this paper is no more than a
prototype and a suggested implementation of the
backup system.

4. CONCLUSIONS

The system discussed in this paper is still
very immature and there are far more topics and
issues that need to be considered before much of
significant conclusions can be drawn. However,
the idealized model of the DDS we have created
so far reminds us of difficulties of implementing
a system that involves components that are
completely unreliable and unpredictable. Use of
dynamic optimization algorithms is
recommended for the system, and it is probably
one of the biggest areas that need to be further
studied. The implementation of the system is
theoretically possible, but given the restraints in
the amount of available resources and
technology we have today, the DDS may not be
100% reliable. Since backup media and
technology are constantly improving from day to
day, perhaps it is not worth archiving a large data
remotely in networked computers.

Nonetheless, technology similar to the DDS
may be used to serve as a file sharing system for
large volume of data or as a highly secure
method of warehousing sensitive data (it may
take ages for a computer hacker to get his hands
on the packages that are spread all over the
world!). The applicability of the system is not
limited, and it is only up for imagination to
implement the system in marvelous ways.

Further research with tens of hundreds of
testing is necessary to optimize the system to the
fullest extent and to determine the usefulness of
the system. However, it is my wish that this
paper will serve as guidance to the next level of
research and a cornerstone for the DDS and its
future derivatives.

5. RELATED WORK

There are several papers that opened the
doors to the idea for the basic structure of DDS.
Jun Rao et al. discusses a way to automate data
partitioning that ensures optimal performance

 11

upon parallel execution of the data by multiple
processes. Although no execution of the data
occurs in DDS that may require efficient
partitioning, the idea of making the system more
efficient through parallel processing has given
rise to the concept of implementing Managers.
Since there are multiple Managers serving the
DataOwner, the workload for the Managers and
the DataOwner is cut down significantly [2].

David Lomet presents a way in which data
can be backed up from “off-line” media that does
not get modified while restoration is in progress.
The method is very handy for any backup that
involves write functionality, but since DDS
assumes that the archived data is only read and
not written into, it does not quite apply to the
system [3].

Leslie Lamport’s Paxos discusses how
different processes in a distributed system can
execute efficiently and without any
inconsistency, but it does not apply to DDS that
involves no execution of multiple processes that
share a critical section [4].

Stefan Ludwig and Winfried Kalfa introduce
Fairly Secure File System (FSFS) in which files
are encrypted at the kernel level. This paper was
the initial point at which encryption ideas for
DDS, such as the need for multiple keys for
access of the files by multiple users, originated.
But since DDS is handled at the software level
rather than at the kernel level and it assumes that
only one party, namely the DataOwner, requires
the access to the file, FSFS does not directly
apply to DDS and other ways of encryption still
needs to be sought [5].

Edward Lee and Chandramohan Thekkath
present the Petal, a concept by which virtual
disks are created from distributed systems. The
foundation of DDS lies in the Petal system, for it
has spawned the idea of having a global state
manager (the ServiceProvider), of having
multiple copies of a package in different servers
for heightened reliability, of overhead reduction,
of requirements for large storage space due to
mirroring, and of message passing among the
components of the system [1].

6. ACKNOWLEDGEMENTS

I would like to thank Professor Elizabeth
Borowsky for her generous and patient
assistance and guidance throughout the 2002-
2003 academic year. I would also like to thank
Phil Temples for his kind support with Unix

when I was testing out the prototype. And
finally, I would like to thank my family for their
warm words of encouragement and especially
my father for his brilliant idea that gave birth to
this project.

7. REFERENCES

[1] Edward Lee and Chandramohan Thekkath.

Petal: Distributed Virtual Disks. In
Proceedings of the Seventh International
Conference on Architectural Support for
Programming Languages and Operating
Systems, pages84-92, September 1996.

[2] Jun Rao, et al. Automating Physical

Database Design in a Parallel Database. In
Proceedings of the 2002 ACM SIGMOD
International Conference on Management of
Data, pages 558-569, 2002.

[3] David Lomet. High Speed On-line Backup
When Using Logical Log Operations. In
Proceedings of the 2000 ACM SIGMOD
International Conference on Management of
Data, pages 34-45, 2000.

[4] Leslie Lamport. The Part-Time Parliament.

ACM Trans. On Comp. Sys., Volume 16,
Number 2, pages 133-169, May 1998.

[5] Stefan Ludwig and Winfried Kalfa. File

System Encryption with Integrated User
Management. ACM SIGOPS Op. Sys.
Review, Volume 35, Issue 4, pages 88-93,
October 2001.

 12

Appendix A – Notes on the Codes

A.1 HJSplit

The prototype of the DDS was coded in
Java, and it implements HJSplit for Java 1.0, a
class that splits a file of any size into smaller
files and rebuilds them back to the original file.
The original code was written by Henk
Hagedoorn and it was rewritten for Java by
Rhesa Rozendaal.

A.2 Classes

There are 25 classes total including the
HJSplit class, and a brief description of each
class is given in the header of the class source
code. Each of the components in the DDS must
have the following classes (the * indicates the
classes that need to be executed to run the
program):

ServiceProvider:
 Commands.java

CommandSender.java
DataHostData.java
DataOwnerData.java
FileTracker.java
ListConsole.java
ManagerData.java
ServiceProviderDriver.java *
SPConnect.java

DataOwner:
 Commands.java

CommandSender.java
DataOwnerData.java
DataOwnerDriver.java *
DOCommandListener.java
DOConnect.java
FileReceiver.java
FileSender.java
FileTracker.java
HJSplit.java
ManagerData.java

Manager:

Commands.java
CommandSender.java
DataHostData.java
DHInfo.java
DHLocator.java
DHTracker.java
FileDistributer.java
FileReceiver.java
FileSender.java
FileTracker.java

ManagerData.java
ManagerDriver.java *
MNCommandListener.java
MNConnect.java

DataHost:

Commands.java
CommandSender.java
DataHostData.java
DataHostDriver.java *
DHCommandListener.java
DHConnect.java
FileReceiver.java
FileSender.java
FileTracker.java
ManagerData.java

A.3 Current Implementation

Depending on where the ServiceProvider
resides, the IP address information in the
following classes must be changed accordingly:

DataHostDriver.java
DataOwnerDriver.java
DHConnect.java
FileDistributer.java
ManagerDriver.java
MNConnect.java

Currently, the Maintain and Terminate states

have not been implemented in the codes. The
program runs fine if there is only one split
package to be distributed, but if there is more
than one, the DataOwner fails to send out the
packages.

The program is heavily multi-threaded, and
there may be some violation of simultaneously
accessing critical sections. Also, the
synchronization in some classes may halt the
program interminably in a number of instances
(i.e. when a class unexpectedly quits running).
The program is vulnerable to errors and does not
handle Exceptions too well.

The algorithm that presorts the lists in
ListConsole.java have some faults and may
ignore the first element in the list.

A.4 Commands

The system relies heavily on message
passing that is done by exchanging instances of
the Commands class. Here is a brief summary of
the numeric commands used by the current
implementation. Service Provider generates all
one-digit commands. Other components
generate two-digit commands, and the ones

 13

starting with 1 is generated by DataOwner, with
2 by Manager, and with 3 by DataHost.

Commands Function

1 Check to see if Manager is alive, if
it is, make it inactive

2 Send a list of Managers to
DataOwner

3 Check to see if DataHost is alive,
if it is, make it inactive

4 Send a list of DataHosts to
Manager

5 Tell Manager to send packages to
DataOwner

10 Initiate DataOwner
11 Give the original file name to

ServiceProvider
12 Tell ServiceProvider that I’m

about to distribute packages
13 Tell Manager to get ready to

receive a package
14 Package sent, make the Manager

active
15 Give a list of my Managers to

ServiceProvider
16 Package not sent, make the

Manager active
17 Tell ServiceProvider that I want to

retrieve packages
20 Initiate Manager
21 N/A
22 Tell ServiceProvider that I’m

active
23 Tell ServiceProvider that I’m

about to distribute packages to
DataHosts

24 Tell DataHost to get ready to
receive a package

25 Package sent, make the DataHost
active

26 Package not sent, make the
DataHost active

27 Tell DataHost to send a package
28 Tell DataOwner to get ready to

receive a package
30 Initiate DataHost
31 N/A
32 Tell ServiceProvider that I’m

active
33 Tell manager to get ready to

receive a package

A.5 References for the Codes

Café au Lait. Java Socket Programming.

Retrieved November 3, 2002 from
http://www.cafeaulait.org/slides/sd2003west
/sockets/Java_Socket_Programming.html.

IBM. Writing Efficient Thread-Safe Classes.

Retrieved February 14, 2003 from
http://www-
900.ibm.com/developerWorks/cn/java/threa
dsafe/index_eng.shtml.

Kobu.com. Java Code Samples. Retrieved

February 3, 2003 from
http://www.kobu.com/purejava/index-
en.htm.

Linux Journal. Java and Client-Server.

Retrieved February 5, 2003 from
http://www.linuxjournal.com/article.php?sid
=155.

Network Buyers Guide. White Paper – Storage

Networking. Retrieved September 9, 2002
from
http://www.networkbuyersguide.com/search
/105112.htm.

Sun Microsystems. Hello Client-Server

Example. Retrieved January 27, 2003 from
http://java.sun.com/docs/books/tutorial/idl/h
ello/.

Sun Microsystems. Java Developer Connection

– Copy File. Retrieved March 19, 2003
from
http://forum.java.sun.com/thread.jsp?thread
=28255&forum=17&message=69505.

Sun Microsystems. Reading and Writing Data

Code Samples. Retrieved February 5, 2003
from
http://developer.java.sun.com/developer/cod
esamples/rw.html.

Sun ONE Middleware Developer. Java Code

Samples. Retrieved January 30, 2003 from
http://developer.iplanet.com/docs/examples/j
ava.html.

 14

Appendix B – Code Listing

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

ServiceProvider, DataOwner, Manager, DataHost - Commands.java

Object that gets passed around between the components as messages
**/

import java.io.*;
import java.util.*;

public class Commands implements Serializable
{
 private long myID = -1;
 private double myKey = -1;
 private int command = -1;
 private int num = -1;
 private int num2 = -1;
 private long lNum = -1;
 private String str = null;
 private String str2 = null;
 private Date time = null;
 private Object o = null;

 public Commands(long id, double key, int cmd)
 {
 time = new Date();

 myID = id;
 myKey = key;
 command = cmd;
 }

 public Commands(long id, double key, int cmd, int x)
 {
 time = new Date();

 myID = id;
 myKey = key;
 command = cmd;

 num = x;
 }

 public Commands(long id, double key, int cmd, long x)
 {
 time = new Date();

 myID = id;
 myKey = key;
 command = cmd;

 lNum = x;
 }

 public Commands(long id, double key, int cmd, int x, long y)
 {
 time = new Date();

 myID = id;
 myKey = key;
 command = cmd;

 num = x;
 lNum = y;
 }

 public Commands(long id, double key, int cmd, String s)
 {
 time = new Date();

 myID = id;
 myKey = key;
 command = cmd;

 str = s;
 }

 public Commands(long id, double key, int cmd, String s, int i)
 {
 time = new Date();

 myID = id;
 myKey = key;
 command = cmd;

 str = s;
 num = i;

 }

 15

 public Commands(long id, double key, int cmd, String s, String s2)
 {
 time = new Date();

 myID = id;
 myKey = key;
 command = cmd;

 str = s;
 str2 = s2;
 }

 public Commands(long id, double key, int cmd, String s, long l)
 {
 time = new Date();

 myID = id;
 myKey = key;
 command = cmd;

 str = s;
 lNum = l;
 }

 public Commands(long id, double key, int cmd, String s, long l, int i)
 {
 time = new Date();

 myID = id;
 myKey = key;
 command = cmd;

 str = s;
 lNum = l;
 num2 = i;

 }

 public Commands(long id, double key, int cmd, Object ob)
 {
 time = new Date();

 myID = id;
 myKey = key;
 command = cmd;

 o = ob;
 }

 public long getID()
 {
 return myID;
 }

 public double getKey()
 {
 return myKey;
 }

 public int getCommand()
 {
 return command;
 }

 public int getNum()
 {
 return num;
 }

 public int getNum2()
 {
 return num2;
 }

 public long getLong()
 {
 return lNum;
 }

 public String getString()
 {
 return str;
 }

 public String getString2()
 {
 return str2;
 }

 public Date getTime()
 {
 return time;
 }

 public Object getObject()

 16

 {
 return o;
 }

 public void clearObject()
 {
 o = null;
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

ServiceProvider, DataOwner, Manager, DataHost - CommandSender.java

Class that sends commands created with Commands class
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

public class CommandSender
{
 private String address = "";
 private Commands command;
 private int port = 3000;
 private final int TIMEOUT = 60 * 1000;

 public CommandSender(String ad, Commands cm)
 {
 address = ad;
 command = cm;
 }

 public CommandSender(String ad, int pt, Commands cm)
 {
 address = ad;
 port = pt;
 command = cm;
 }

 public boolean sendCommand() throws Exception
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 Socket socket = null;

 try
 {
 // open a socket connection
 socket = new Socket(address, port);
 socket.setSoTimeout(TIMEOUT);

 17

 // open I/O streams for objects
 oos = new ObjectOutputStream(socket.getOutputStream());
 ois = new ObjectInputStream(socket.getInputStream());

 //send the command
 oos.writeObject(command);
 oos.flush();

 //receive ACK
 Commands ack = (Commands) ois.readObject();

 oos.close();
 ois.close();

 if(ack.getID() == command.getID() && ack.getTime().equals(command.getTime()))
 {
 System.out.println("Command successful: " + command.getCommand());
 return true;
 }
 else
 {
 System.out.println("Command unsuccessful: " +
command.getCommand());
 return false;
 }
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 return false;
 }
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

ServiceProvider, Manager, DataHost - DataHostData.java

Object that stores information on a DataHost
**/

import java.io.*;
import java.util.*;

public class DataHostData implements Serializable
{
 private long id; //The ID
 private double key; //The Key
 private int capacity; //The total capacity of shared drive space
 private int used = 0; //Drive space used for the service
 private String addrs = ""; //My IP address
 private boolean active = true; //Available for service
 private Vector fTracker = null; //File tracker for each file hosted

 public DataHostData(long i, double k, int c, String s)
 {
 id = i;
 key = k;
 capacity = c;
 addrs = s.substring(1);
 fTracker = new Vector();
 }

 public long getID()
 {
 return id;
 }

 public double getKey()
 {
 return key;
 }

 public int getCapacity()
 {
 return capacity;
 }

 18

 public int getUsed()
 {
 return used;
 }

 public int getAvailable()
 {
 return capacity - used;
 }

 public String getAddress()
 {
 return addrs;
 }

 public boolean isActive()
 {
 return active;
 }

 public void setAddress(String s)
 {
 addrs = s.substring(1);
 }

 public void incUsed(int a)
 {
 used += a;
 }

 public void setActive()
 {
 active = true;
 }

 public void setInactive()
 {
 active = false;
 }

 public void addTracker(FileTracker ft)
 {
 fTracker.add(ft);
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

DataHost - DataHostDriver.java

Driver class for a DataHost
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

public class DataHostDriver
{
 private final int MB = 100;//in MB
 private final int CAPACITY = 1024000*MB;//in bytes
 private final String FILE = "DataHost.dat";
// private final String ADDRS = "127.0.0.1";
// private final String ADDRS = "136.167.212.93";
 private final String ADDRS = "136.167.117.84"; //IP Address of the
ServiceProvider
 private final int SPPORT = 3000;
 private final int TIMEOUT = 60 * 1000;

 private DataHostData data;

 public DataHostDriver()
 {
 }

 public static void main(String argv[]) throws Exception
 {
 //
 System.out.println("Boston College");
 System.out.println("Computer Science Department");
 System.out.println();
 System.out.println("Senior Thesis 2003");
 System.out.println("Distributed Data Storage: Data Backup Over
Networks");
 System.out.println("(c) Hiroyuki Hayano");
 System.out.println("Prof. Elizabeth Borowsky");
 System.out.println();
 System.out.println();
 //

 19

 DHCommandListener cl = new DHCommandListener();
 cl.start();

 DataHostDriver dh = new DataHostDriver();
 dh.startSession();
 }

 private void startSession() throws Exception
 {
 readData();

 if(data==null)
 {
 System.out.println("Data file not found or corrupt, setting up
DataHost...");
 setupDataHost();
 }

 //Tell ServiceProvider that I'm online
 data.setActive();
 writeFile(data, FILE);
 Commands c = new Commands(data.getID(), data.getKey(), 32, data);
 CommandSender cs = new CommandSender(ADDRS, c);
 cs.sendCommand();
 }

 private void readData() throws Exception
 {
 //attempt to read data from DataHost.dat
 try
 {
 System.out.println("Reading " + FILE);
 FileInputStream fis = new FileInputStream(FILE);
 ObjectInputStream ois = new ObjectInputStream(fis);
 data = (DataHostData) ois.readObject();

 ois.close();
 fis.close();
 }
 catch(Exception e)
 {
 data = null;
 }
 }

 //Method to write to an object to a file

 private void writeFile(Object o, String fName)
 {
 try
 {
 FileOutputStream fos = new FileOutputStream(fName);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);
 oos2.writeObject(o);
 oos2.flush();

 System.out.println(fName + " written");

 oos2.close();
 fos.close();
 }
 catch(Exception e)
 {
 System.out.println("Cannot write to file: " + fName);
 }
 }

 //Method to setup a DataHost first time it is run
 private void setupDataHost() throws Exception
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 Socket socket = null;

 Commands command = new Commands(-1, -1, 30, CAPACITY);

 try
 {
 // open a socket connection
 socket = new Socket(ADDRS, SPPORT);
 socket.setSoTimeout(TIMEOUT);

 // open I/O streams for objects
 oos = new ObjectOutputStream(socket.getOutputStream());
 ois = new ObjectInputStream(socket.getInputStream());

 //send the command
 oos.writeObject(command);
 oos.flush();

 //receive the unique id
 data = (DataHostData) ois.readObject();

 oos.close();
 ois.close();

 20

 //write the data to DataHost.dat
 synchronized(data)
 {
 FileOutputStream fos = new FileOutputStream(FILE);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);
 oos2.writeObject(data);
 oos2.flush();

 System.out.println(FILE + " created");

 oos2.close();
 fos.close();
 }

 System.out.println("DataHost setup complete");
 System.out.println("ID: " + data.getID());
 System.out.println("Maximum capacity: " + CAPACITY + " bytes");
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

ServiceProvider, DataOwner - DataOwnerData.java

Object that stores information on a DataOwner
**/

import java.io.*;
import java.util.*;

public class DataOwnerData implements Serializable
{
 private long id; //The ID
 private double key; //The Key
 private String file = null; //Name of the original file
 private String addrs = ""; //My IP address
 private Vector managers = null; //A list of my Managers
 private int numFiles = 0; //Number of packages

 public DataOwnerData(long i, double k, String s)
 {
 id = i;
 key = k;
 addrs = s.substring(1);

 managers = new Vector();
 }

 public long getID()
 {
 return id;
 }

 public double getKey()
 {
 return key;
 }

 public String getFileName()
 {
 return file;
 }

 public String getAddress()

 21

 {
 return addrs;
 }

 public Vector getManagers()
 {
 return managers;
 }

 public int getNumFiles()
 {
 return numFiles;
 }

 public void setFileName(String s)
 {
 file = s;
 }

 public void setNumFiles(int i)
 {
 numFiles = i;
 }

 public void setAddress(String s)
 {
 addrs = s.substring(1);
 }

 public void addManager(long m)
 {
 Long l = new Long(m);
 managers.add(l);
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

DataOwner - DataOwnerDriver.java

Driver class for a DataOwner

HJSplit for Java 1.0
(c)1997-2000 Henk Hagedoorn <hjh@usa.net>
(c)1997-2000 Java version Rhesa Rozendaal <rhesa@usa.net>
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

public class DataOwnerDriver
{
 private final String FILE = "DataOwner.dat";
// private final String ADDRS = "127.0.0.1";
// private final String ADDRS = "136.167.212.93";
 private final String ADDRS = "136.167.117.84"; //IP Address of the
ServiceProvider
 private final int SPPORT = 3000;
 private final int MNPORT = 3002;
 private final int TIMEOUT = 60 * 1000;
 private final int TRIALS = 5;

 private DataOwnerData data = null;

 public DataOwnerDriver()
 {
 }

 public static void main(String argv[]) throws Exception
 {
 //
 System.out.println("Boston College");
 System.out.println("Computer Science Department");
 System.out.println();
 System.out.println("Senior Thesis 2003");
 System.out.println("Distributed Data Storage: Data Backup Over
Networks");
 System.out.println("(c) Hiroyuki Hayano");

 22

 System.out.println("Prof. Elizabeth Borowsky");
 System.out.println();
 System.out.println();
 //

 DataOwnerDriver dod = new DataOwnerDriver();
 dod.startSession(argv);
 }

 //Read the parameter and take an appropriate action
 private void startSession(String[] param)
 {
 try
 {

 //initiate DataOwner--
 if(param[0].equals("-i"))
 {
 readData();

 if(data==null) //If the DataOwner has not been initialized
 {
 System.out.println("Initializing DataOwner...");
 setupDataOwner();
 }
 else
 {
 System.out.println("DataOwner has already been
initialized");
 System.exit(1);
 }
 }

 //split file--
 else if(param[0].equals("-s"))
 {
 readData();

 String size;
 File f;

 if(data==null) //If the DataOwner has not been initialized
 {
 System.out.println("DataOwner has not yet been
initialized");
 System.out.println("Type 'java DataOwnerDriver
-?' for help");
 System.exit(1);

 }

 else
 {
 //Specify the size of each package
 try
 {
 size = "-s" + param[2];
 System.out.println("size = " +
param[2] + "kB");
 }
 catch(Exception e)
 {
 size = "-s";
 System.out.println("size =
1440kB");
 }

 try
 {
 f = new File(param[1]);

 if(!f.exists()) //If the original
file does not exist
 {

 System.out.println("The file " + param[1] + " cannot be read. Please check the
file name.");
 System.exit(1);
 }

 data.setFileName(param[1]);
 writeFile(data, FILE);

 //Give the name of the
original file to the ServiceProvider
 Commands c = new
Commands(data.getID(), data.getKey(), 11, param[1]);
 CommandSender cs = new
CommandSender(ADDRS, c);
 if(!cs.sendCommand())
 {

 System.out.println("The communication to server failed. Try again later");
 System.exit(1);
 }

 23

 String newFName = "" + data.getID();
 File newFile = new File(newFName);
 copyFile(f, newFile);
 newFile.deleteOnExit();

 String command[] = {size,
newFName};
 System.out.println("splitting " +
param[1] + "...");

 //Now split the original file
 HJSplit.main(command);
 }
 catch(Exception e)
 {
 System.out.println("Required
parameter missing");
 System.exit(1);
 }
 }
 }

 //distribute files--
 else if(param[0].equals("-d"))
 {
 readData();

 DOCommandListener dl = new DOCommandListener();
 dl.start();

 if(data==null) //If the DataOwner has not been initialized
 {
 System.out.println("DataOwner has not yet been
initialized");
 System.out.println("Type 'java DataOwnerDriver
-?' for help");
 System.exit(1);
 }

 String fPrefix = "" + data.getID();
 boolean fileExists = true;
 int i = 0;
 int j = 0;
 int k = 1;
 int numFiles = 0;
 Vector fileList = new Vector();

 //Determine the number of packages to distribute

 while(fileExists)
 {
 String s = fPrefix + "." + i + j + k;
 File f = new File(s);
 f.deleteOnExit();

 if(f.exists())
 {
 fileList.add(f);
 numFiles ++;
 k++;
 if(k>=10)
 {
 k=0;
 j++;
 if(j>=10)
 {
 j=0;
 i++;
 }
 }
 }

 else fileExists = false;

 }//end while

 if(numFiles == 0) //If there is no package to
distribute
 {
 System.out.println("The split files
could not be found. Please choose option -s.");
 System.exit(1);
 }

 data.setNumFiles(numFiles);
 writeFile(data, FILE);

 int numComplete = 0;
 int fileIndex1 = 0;
 int fileIndex2 = 0;
 int outstanding = 0;
 int attempts = 0;

 while(numComplete < numFiles) //While all
packages are being delivered
 {

 24

 outstanding = numFiles - numComplete;

 //Get a number of Managers from
ServiceProvider
 Commands c = new Commands(data.getID(),
data.getKey(), 12, outstanding);
 CommandSender cs = new
CommandSender(ADDRS, c);

 if(!cs.sendCommand())
 {
 System.out.println("The Managers
could not be grabbed. Try again later");
 System.exit(1);
 }

 else
 {
 File reqman = new File("reqman.dat");
//Temp file containing the Managers
 reqman.deleteOnExit();
 Vector managers = (Vector)
readFile("reqman.dat");
 if(managers.size() == 0) //If no
Manager is given from the ServiceProvider
 {
 System.out.println("The
Managers could not be grabbed. Try again later");
 System.exit(1);
 }
 for(int a = 0; a<outstanding; a++)
//While the packages are being sent to the Managers
 {
 try
 {
 ManagerData mn =
(ManagerData) managers.get(a); //Grab a Manager
 File f1 = (File)
fileList.get(fileIndex1); //Grab a package
 int tPort = 3004 +
(int) (Math.random() * 1000.0);

 //Prepare Manager
to receive a package
 Commands c1 =
new Commands(data.getID(), 0, 13, f1.getName(), f1.length(), tPort);
 CommandSender
cs1 = new CommandSender(mn.getAddress(), MNPORT, c1);

 if(cs1.sendCommand())
 {

 //Send a package

 FileSender fs1 = new FileSender(f1, mn.getAddress(), tPort);

 if(fs1.sendFile())

 {

 fileIndex2 = fileIndex1 + 1;

 if(fileIndex2 >= numFiles)

 fileIndex2 = 0;

 //Send a second package

 File f2 = (File) fileList.get(fileIndex2);

 if(!f2.equals(f1))

 {

 int tPort2 = 3004 + (int) (Math.random() * 1000.0);

 //Prepare Manager to receive another package

 Commands c2 = new Commands(data.getID(), 0, 13, f2.getName(),
f2.length(), tPort2);

 CommandSender cs2 = new CommandSender(mn.getAddress(),
MNPORT, c2);

 if(cs2.sendCommand())

 {

 //Send the second package

 FileSender fs2 = new FileSender(f2, mn.getAddress(),
tPort2);

 if(fs2.sendFile())

 25

 {

 //Packages are delivered, now tell Manager to be active again

 Commands c3 = new Commands(data.getID(), 0, 14, f1.getName(),
f2.getName());

 CommandSender cs3 = new CommandSender(mn.getAddress(),
MNPORT, c3);

 if(cs3.sendCommand()) //If the delivery process is complete

 {

 fileIndex1++;

 if(fileIndex1 >= numFiles)

 fileIndex1 = 0;

 //Tell ServiceProvider who is managing for me

 Commands c4 = new Commands(data.getID(),
data.getKey(), 15, mn.getID());

 CommandSender cs4 = new CommandSender(ADDRS,
c4);

 cs4.sendCommand();

 numComplete++;

 }

 }

 else //if 2/2 files not sent

 {

 //Packages are not delivered, but tell Manager to be active again

 Commands c5 = new Commands(data.getID(), 0, 16);

 CommandSender cs5 = new CommandSender(mn.getAddress(),
MNPORT, c5);

 cs5.sendCommand();

 attempts++;

 if(attempts<TRIALS * numFiles) //If package
delivery failed too many times

 System.out.println("Distribution of
files failed, trying alternatives...");

 else

 {

 System.out.println("Distribution of
files failed. Try again later");

 System.exit(1);

 }

 }

 }

 }

 else //if there is only 1 package total

 {

 //Package delivered, not tell the Manager to be active again

 Commands c6 = new Commands(data.getID(), 0, 14, f1.getName());

 CommandSender cs6 = new CommandSender(mn.getAddress(),
MNPORT, c6);

 if(cs6.sendCommand())

 {

 //Tell ServiceProvider who is managing for me

 26

 Commands c7 = new Commands(data.getID(), data.getKey(), 15, mn.getID());

 CommandSender cs7 = new CommandSender(ADDRS, c7);

 cs7.sendCommand();

 numComplete++;

 }

 }
 }
 else //if
no file sent
 {

 //Packages are not delivered, but tell Manager to be active again

 Commands c6 = new Commands(data.getID(), 0, 16);

 CommandSender cs6 = new CommandSender(mn.getAddress(), MNPORT, c6);

 cs6.sendCommand();

 attempts++;

 if(attempts<TRIALS * numFiles) //If package delivery failed too many times

 System.out.println("Distribution of files failed, trying alternatives...");

 else

 {

 System.out.println("Distribution of files failed. Try again later");

 System.exit(1);

 }
 }
 }
 }//end try
 catch(Exception e) //If
something fataly wrongs happenes in distributing packages
 {
 attempts++;

 if(attempts<TRIALS * numFiles)

 System.out.println("Distribution of files failed, trying alternatives...");
 else
 {

 System.out.println("Distribution of files failed. Try again later");

 System.exit(1);
 }
 }
 }//end for
 }//end else
 }//end while

 System.out.println("Distribution successful");
 System.exit(1);
 }

 //retrieve packets--
 else if(param[0].equals("-r"))
 {
 readData();

 DOCommandListener dl = new DOCommandListener();
 dl.start();

 if(data==null) //If the DataOwner has not been
initialized
 {
 System.out.println("DataOwner has not
yet been initialized");
 System.out.println("Type 'java
DataOwnerDriver -?' for help");
 System.exit(1);
 }

 else
 {
 //Send ServiceProvider a package
retrieval request
 Commands c = new
Commands(data.getID(), data.getKey(), 17);
 CommandSender cs = new
CommandSender(ADDRS, c);

 27

 cs.sendCommand();
 }
 int numFiles = data.getNumFiles();
 String prefix = "" + data.getID();
 boolean filesGrabbed = false;

 while(true) //While all the packages are being delivered
 {
 int i = 0;
 int j = 0;
 int k = 1;

 for(int a=0; a<numFiles; a++)
 {
 String s = prefix + "." + i + j + k;
 File f = new File(s);

 if(!f.exists())
 {
 a = numFiles;
 filesGrabbed = false;
 }

 else
 {
 filesGrabbed = true;

 k++;
 if(k>=10)
 {
 k=0;
 j++;
 if(j>=10)
 {
 j=0;
 i++;
 }
 }
 }
 }

 if(filesGrabbed)
 break;
 }

 int o = 0;
 int p = 0;
 int q = 1;

 String fName = data.getFileName();

 //Rename the packages to match the original file
 for(int b=0; b<numFiles; b++)
 {
 String s = prefix + "." + o + p + q;
 File f = new File(s);
 f.deleteOnExit();

 File fOriginal = new File(fName + "."
+ o + p + q);
 f.deleteOnExit();
 f.renameTo(fOriginal);

 q++;
 if(q>=10)
 {
 q=0;
 p++;
 if(p>=10)
 {
 p=0;
 o++;
 }
 }
 }

 String command[] = {"-j", fName};
 //Rebuild the original file
 HJSplit.main(command);
 }

 else if(param[0].equals("-z"))
 {
 System.out.println("This function has not yet
been programmed");
 }

 //print help if no parameter--
 else
 {
 printHelp();
 System.exit(1);
 }
 }
 catch(Exception e)
 {

 28

 printHelp();
 System.exit(1);
 }
 }

 private void printHelp()
 {
 System.out.println("usage: java DataOwnerDriver [command]");
 System.out.println();
 System.out.println("commands:");
 System.out.println("-i initialize DataOwner");
 System.out.println("-s [filename] [size] split file into packets of size kB");
 System.out.println(" (if no file size is specified, the");
 System.out.println(" default is 1440kB)");
 System.out.println("-d distribute the split files");
 System.out.println("-r retrieve and recover original file");
 System.out.println("-z delete the distributed packets and
terminate");
 System.out.println(" DataOwner");
 System.out.println("-? help (this text)");
 }

 //Method to copy (duplicate) a file
 private void copyFile(File f, File newFile)
 {
 try
 {
 FileReader in = new FileReader(f);
 FileWriter out = new FileWriter(newFile);
 int c;

 while ((c = in.read()) != -1)
 {
 out.write(c);
 }

 out.flush();
 in.close();
 out.close();
 }
 catch(Exception e)
 {
 System.out.println(e);
 }
 }

 //Method to read an object from a file
 private Object readFile(String fName) throws Exception

 {
 //attempt to read a file
 try
 {
 System.out.println("Reading " + fName);
 FileInputStream fis = new FileInputStream(fName);
 ObjectInputStream ois = new ObjectInputStream(fis);
 Object o = ois.readObject();

 ois.close();
 fis.close();

 return o;
 }
 catch(Exception e)
 {
 System.out.println(fName + " could not be read.");
 return null;
 }
 }

 //Method to write an object to a file
 private void writeFile(Object o, String fName)
 {
 try
 {
 FileOutputStream fos = new FileOutputStream(fName);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);
 oos2.writeObject(o);
 oos2.flush();

 System.out.println(fName + " written");

 oos2.close();
 fos.close();
 }
 catch(Exception e)
 {
 System.out.println("Cannot write to file: " + fName);
 }
 }

 //Read the info on this DataOwner
 private void readData() throws Exception
 {
 //attempt to read data from DataOwner.dat
 try
 {

 29

 System.out.println("Reading " + FILE);
 FileInputStream fis = new FileInputStream(FILE);
 ObjectInputStream ois = new ObjectInputStream(fis);
 data = (DataOwnerData) ois.readObject();

 ois.close();
 fis.close();
 }
 catch(Exception e)
 {
 data = null;
 }
 }

 //Initialize this DataOwner through ServiceProvider
 private void setupDataOwner() throws Exception
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 Socket socket = null;

 Commands command = new Commands(-1, -1, 10);

 try
 {
 // open a socket connection
 socket = new Socket(ADDRS, SPPORT);
 socket.setSoTimeout(TIMEOUT);

 // open I/O streams for objects
 oos = new ObjectOutputStream(socket.getOutputStream());
 ois = new ObjectInputStream(socket.getInputStream());

 //send the command
 oos.writeObject(command);
 oos.flush();

 //receive the unique id
 data = (DataOwnerData) ois.readObject();

 oos.close();
 ois.close();

 //write the data to DataOwner.dat
 synchronized(data)
 {
 FileOutputStream fos = new FileOutputStream(FILE);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);

 oos2.writeObject(data);
 oos2.flush();

 System.out.println(FILE + " created");

 oos2.close();
 fos.close();
 }

 System.out.println("DataOwner setup complete");
 System.out.println("ID: " + data.getID());
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
}

 30

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

DataHost - DHCommandListener.java

Listens for commands sent by CommandSener class
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

public class DHCommandListener extends Thread
{
 private final int MYPORT = 3003;
 private ServerSocket dhServer;

 public DHCommandListener(){}

 public void run()
 {
 try
 {
 dhServer = new ServerSocket(MYPORT);
 System.out.println("CommandListner listening on port " + MYPORT);
 }
 catch(Exception e){}

 while(true)
 {
 try
 {
 System.out.println("Waiting for incoming commands...");
 Socket incoming = dhServer.accept();
 System.out.println("Accepted a connection from " +
incoming.getInetAddress());
 DHConnect c = new DHConnect(incoming);
 }
 catch(Exception e) {}
 }
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

DataHost - DHConnect.java

Class that processes incoming commands
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

class DHConnect extends Thread
{
 private Socket incoming = null;
 private ObjectInputStream ois = null;
 private ObjectOutputStream oos = null;
 private Commands command = null;
 private final String FILE = "DataHost.dat";
// private final String ADDRS = "127.0.0.1";
// private final String ADDRS = "136.167.212.93";
 private final String ADDRS = "136.167.117.84"; //IP Address of
ServiceProvider
 private final long SVID = 761985762;
 private final double SVKEY = 856019204;
 private final int MNPORT = 3002;
 private final int TIMEOUT = 60 * 1000;
 private Vector v = null;

 public DHConnect() {}

 public DHConnect(Socket incomingSocket)
 {
 try
 {
 incoming = incomingSocket;
 incoming.setSoTimeout(TIMEOUT);

 ois = new ObjectInputStream(incoming.getInputStream());
 oos = new ObjectOutputStream(incoming.getOutputStream());
 }
 catch(Exception e1)
 {
 try

 31

 {
 incoming.close();
 }

 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }

 return;
 }

 this.start();
 }

 public void run()
 {
 try
 {
 int flag = 0;
 command = (Commands) ois.readObject();

 int c = command.getCommand();
 System.out.println("Incoming command: " + c);

 //Commands from SeviceProvider
 if(command.getID() == SVID && command.getKey() == SVKEY)
 {
 //Check if I'm alive, and set myself inactive
 if(c==3)
 {
 DataHostData dhd = (DataHostData)
readFile(FILE);

 if(dhd.isActive() && dhd.getAvailable() >=
command.getLong())
 {
 dhd.setInactive();
 flag = updateFile(FILE, dhd);
 }
 else flag = -1;
 }

 }

 //Get ready to receive a package from the Manager
 else if(c==24)

 {
 FileReceiver fr = new
FileReceiver(incoming.getInetAddress(), command.getNum2(), command.getString(),
command.getLong());
 fr.start();
 flag = 1;
 }

 //Confirm the receipt of a package
 else if(c==25)
 {
 String f = command.getString();
 FileTracker ft = new FileTracker(f,
command.getID());

 DataHostData dhd = (DataHostData)
readFile(FILE);
 dhd.addTracker(ft);
 dhd.incUsed(command.getNum());
 dhd.setActive();

 flag = updateFile(FILE, dhd);

 //Update my information at ServiceProvider
 Commands cm = new Commands(dhd.getID(),
dhd.getKey(), 32, dhd);
 CommandSender cs = new
CommandSender(ADDRS, cm);
 cs.sendCommand();

 }

 //Package not received, make myself active again
 else if(c == 26)
 {
 DataHostData dhd = (DataHostData)
readFile(FILE);
 dhd.setActive();

 flag = updateFile(FILE, dhd);

 //Update my information at ServiceProvider
 Commands cm = new Commands(dhd.getID(),
dhd.getKey(), 32, dhd);
 CommandSender cs = new
CommandSender(ADDRS, cm);
 cs.sendCommand();
 }

 32

 //Package retrieval request
 else if(c == 27)
 {
 File f = new File(command.getString());
 String mnAdd =
(""+incoming.getInetAddress()).substring(1);

 int tPort = 3004 + (int) (Math.random() * 1000.0);

 //Tell Manager to get ready to receive a package
 Commands c1 = new Commands(0, 0, 33,
command.getString(), f.length(), tPort);
 CommandSender cs1 = new CommandSender(mnAdd,
MNPORT, c1);
 if(cs1.sendCommand())
 {
 //Send a package to the Manager
 FileSender fs = new FileSender(f, mnAdd, tPort);
 if(fs.sendFile())
 flag = 1;
 else flag = -1;
 }
 else flag = -1;
 }

 //send ACK or NAK
 if(flag == 1)
 {
 oos.writeObject(command);
 oos.flush();
 }
 else
 {
 oos.writeObject(new Commands(0,0,0));
 oos.flush();
 }
 }
 catch(Exception e){}
 }

 //Method to read an object from a file
 private Object readFile(String fName) throws Exception
 {
 //attempt to read a file
 try
 {

 System.out.println("Reading " + fName);
 FileInputStream fis = new FileInputStream(fName);
 ObjectInputStream ois = new ObjectInputStream(fis);
 Object o = ois.readObject();

 ois.close();
 fis.close();

 return o;
 }
 catch(Exception e)
 {
 System.out.println(fName + " could not be read.");
 return null;
 }
 }

 //Method to write an object to a file
 private void writeFile(Object o, String fName)
 {
 try
 {
 FileOutputStream fos = new FileOutputStream(fName);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);
 oos2.writeObject(o);
 oos2.flush();

 System.out.println(fName + " written");

 oos2.close();
 fos.close();
 }
 catch(Exception e)
 {
 System.out.println("Cannot write to file: " + fName);
 }
 }

 //Method to update the object contents of a file
 private int updateFile(String fOld, Object nContent)
 {
 synchronized(nContent)
 {
 try
 {
 File f = new File(fOld);
 File tmp = new File("temp.tmp");

 33

 FileOutputStream fos = new FileOutputStream(tmp);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);
 oos2.writeObject(nContent);
 oos2.flush();

 oos2.close();
 fos.close();

 f.delete();
 tmp.renameTo(f);

 System.out.println(fOld + " updated");

 return 1;
 }
 catch(Exception e)
 {
 System.out.println(e);
 System.out.println(fOld + " could not be updated");
 return -1;
 }
 }
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

Manager - DHInfo.java

Object that stores IP address of a DataHost
**/

import java.io.*;

public class DHInfo implements Serializable
{
 private long id = -1;
 private String address = "";

 public DHInfo(long i, String ad)
 {
 id = i;
 address = ad;
 }

 public long getID()
 {
 return id;
 }

 public String getAddress()
 {
 return address;
 }
}

 34

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

Manager - DHLocator.java

Class that keeps track of DataHosts
**/

import java.util.*;
import java.io.*;

public class DHLocator implements Serializable
{
 Vector dh = null;

 public DHLocator()
 {
 dh = new Vector();
 }

 public void update(DHInfo dhi)
 {
 add(dhi, 0, dh.size()-1);
 }

 public DHInfo getDHI(long id)
 {
 DHInfo dhi;

 synchronized(dh)
 {
 dhi = findDHI(id, 0, dh.size()-1);
 }

 return dhi;
 }

 public String getAddress(long id)
 {
 DHInfo dhi = getDHI(id);
 return dhi.getAddress();
 }

 private DHInfo findDHI(long id, int i, int j)
 {

 long indexID;

 if(j < 0)
 {
 return new DHInfo(-1, "");
 }

 else if(i == j)
 {
 DHInfo dhi = (DHInfo)(dh.get(i));
 if(dhi.getID() == id)
 return dhi;
 else return new DHInfo(-1, "");
 }

 indexID = ((DHInfo)(dh.get(1+(i+j)/2))).getID();

 if(indexID > id)
 return findDHI(id, i, (i+j)/2);

 else
 return findDHI(id, 1+(i+j)/2, j);
 }

 private void add(DHInfo dhi, int i, int j)
 {
 long indexID;

 if(j < 0)
 {
 dh.add(i, dhi);
 return;
 }

 else if(i == j)
 {
 if(((DHInfo)(dh.get(i))).getID() == dhi.getID())
 {
 dh.remove(i);
 dh.add(i, dhi);
 }
 else if(((DHInfo)(dh.get(i))).getID() < dhi.getID())
 dh.add(i+1, dhi);
 else
 dh.add(i, dhi);

 return;
 }

 35

 indexID = ((DHInfo)(dh.get(1+(i+j)/2))).getID();

 if(indexID < dhi.getID())
 add(dhi, i, (i+j)/2);

 else
 add(dhi, 1+(i+j)/2, j);

 return;
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

Manager - DHTracker.java

Object that keeps track of which DataHosts are responsible for
a DataOwner
**/

import java.util.*;
import java.io.*;

public class DHTracker implements Serializable
{
 private Vector children1 = null;
 private Vector children2 = null;

 public DHTracker()
 {
 children1 = new Vector();
 children2 = new Vector();
 }

 public void setChildren1(Vector v)
 {
 children1 = v;
 }

 public void setChildren2(Vector v)
 {
 children2 = v;
 }

 public Vector getChildren1()
 {
 if(children1 == null)
 return new Vector();
 return children1;
 }

 public Vector getChildren2()
 {
 if(children2 == null)
 return new Vector();
 return children2;

 36

 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

DataOwner - DOCommandListener.java

Listens for commands sent by CommandSender class
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

public class DOCommandListener extends Thread
{
 private final int MYPORT = 3001;
 private ServerSocket doServer;

 public DOCommandListener(){}

 public void run()
 {
 try
 {
 doServer = new ServerSocket(MYPORT);
 System.out.println("CommandListner listening on port " +
MYPORT);
 }
 catch(Exception e){}

 while(true)
 {
 try
 {
 System.out.println("Waiting for incoming commands...");
 Socket incoming = doServer.accept();
 System.out.println("Accepted a connection from " +
incoming.getInetAddress());
 DOConnect c = new DOConnect(incoming);
 }
 catch(Exception e) {}
 }
 }
}

 37

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

DataOwner - DOConnect.java

Class that processes incoming commands
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

class DOConnect extends Thread
{
 private Socket incoming = null;
 private ObjectInputStream ois = null;
 private ObjectOutputStream oos = null;
 private Commands command = null;
 private final long SVID = 761985762;
 private final double SVKEY = 856019204;
 private final int TIMEOUT = 60 * 1000;
 private Vector v = null;

 public DOConnect() {}

 public DOConnect(Socket incomingSocket)
 {
 try
 {
 incoming = incomingSocket;
 incoming.setSoTimeout(TIMEOUT);

 ois = new ObjectInputStream(incoming.getInputStream());
 oos = new ObjectOutputStream(incoming.getOutputStream());
 }
 catch(Exception e1)
 {
 try
 {
 incoming.close();
 }

 catch(Exception e)
 {

 System.out.println(e.getMessage());
 }

 return;
 }

 this.start();
 }

 public void run()
 {
 try
 {
 int flag = 0;
 command = (Commands) ois.readObject();

 int c = command.getCommand();
 System.out.println("Incoming command: " + c);

 if(command.getID() == SVID && command.getKey() == SVKEY)
 {
 if(c==1)
 {
 flag = 1;
 }

 if(c==2)
 {
 v = (Vector) command.getObject();
 command.clearObject();
 writeFile(v, "reqman.dat");
 flag = 1;
 }
 }

 else if(c==28)
 {
 File f = new File(command.getString());
 if(f.length() >= command.getLong())
 flag = -1;
 else
 {
 FileReceiver fr = new
FileReceiver(incoming.getInetAddress(), command.getNum2(), command.getString(),
command.getLong());
 fr.start();
 flag = 1;

 38

 }
 }

 //send ACK or NAK
 if(flag == 1)
 {
 oos.writeObject(command);
 oos.flush();
 }
 else
 {
 oos.writeObject(new Commands(0,0,0));
 oos.flush();
 }
 }
 catch(Exception e){}
 }

 private void writeFile(Object o, String fName)
 {
 try
 {
 FileOutputStream fos = new FileOutputStream(fName);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);
 oos2.writeObject(o);
 oos2.flush();

 System.out.println(fName + " written");

 oos2.close();
 fos.close();
 }
 catch(Exception e)
 {
 System.out.println("Cannot write to file: " + fName);
 }
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

Manager - FileDistributer.java

Class that distributes packages to DataHosts
**/

import java.io.*;
import java.lang.*;
import java.util.*;

public class FileDistributer extends Thread
{
 private final int DHPORT = 3003;
 private final int MINHOST = 1;
 private final String FILE = "Manager.dat";
 private final String DHINFO = "DHInfo.dat";
// private final String ADDRS = "127.0.0.1";
// private final String ADDRS = "136.167.212.93";
 private final String ADDRS = "136.167.117.84"; //IP Address of
ServiceProvider
 private final int TRIALS = 10;

 private int numFiles = -1;
 private int numHosts = -1;
 private String[] f = new String[2];
 private File[] file = new File[2];
 private long[] leng = new long[2];
 private Vector[] children = new Vector[2];
 private long parent = -1;
 private DHTracker dht = new DHTracker();
 private DHLocator dhl = null;

 public FileDistributer(long p, String ff, int x)
 {
 parent = p;

 f[0] = ff;
 f[1] = null;

 numFiles = 1;
 file[0] = new File(f[0]);
 file[1] = null;
 leng[0] = file[0].length();

 39

 leng[1] = -1;
 numHosts = x;

 children[0] = new Vector();

 this.start();
 }

 public FileDistributer(long p, String ff1, String ff2)
 {
 parent = p;

 f[0] = ff1;
 f[1] = ff2;
 numHosts = MINHOST;

 if(f[1] == null)
 {
 numFiles = 1;
 file[0] = new File(f[0]);
 leng[0] = file[0].length();
 children[0] = new Vector();
 }
 else
 {
 numFiles = 2;
 file[0] = new File(f[0]);
 file[1] = new File(f[1]);
 leng[0] = file[0].length();
 leng[1] = file[1].length();
 children[0] = new Vector();
 children[1] = new Vector();
 }

 this.start();
 }

 public void run()
 {
 try
 {
 System.out.println("Reading " + DHINFO);
 FileInputStream fis = new FileInputStream(DHINFO);
 ObjectInputStream ois = new ObjectInputStream(fis);
 dhl = (DHLocator) ois.readObject();

 ois.close();
 fis.close();

 }
 catch(Exception e)
 {
 dhl = new DHLocator();
 }

 int numComplete;
 int outstanding = 0;
 int attempts = 0;
 boolean exit = false;

 try
 {
 ManagerData mn = (ManagerData) readFile(FILE);

 for(int nf=0; nf<numFiles; nf++)
 {
 numComplete = 0;

 while(numComplete < numHosts && !exit)
 {
 outstanding = numHosts -
numComplete;

 //Ask ServiceProvider for DataHosts
 Commands c = new
Commands(mn.getID(), mn.getKey(), 23, outstanding, leng[nf]);
 CommandSender cs = new
CommandSender(ADDRS, c);
 if(!cs.sendCommand())
 {
 System.out.println("The
DataHosts could not be grabbed");
 attempts++;

 if(attempts>=TRIALS*numFiles)
 exit = true;
 }
 else //if a number of data hosts are
grabbed
 {
 Vector datahosts = (Vector)
readFile("reqdh.dat");
 if(datahosts.size() == 0)
 {

 System.out.println("The DataHosts could not be grabbed");

 40

 attempts++;

 if(attempts>=TRIALS*numFiles)
 exit = true;
 }
 else for(int a = 0; a<outstanding; a++)
 {
 try
 {
 DataHostData dhd
= (DataHostData) datahosts.get(a);
 int tPort = 3004 +
(int) (Math.random() * 1000.0);

 //Tell DataHost to
get ready to receive a package
 Commands c1 =
new Commands(mn.getID(), 0, 24, f[nf], leng[nf], tPort);
 CommandSender
cs1 = new CommandSender(dhd.getAddress(), DHPORT, c1);

 if(cs1.sendCommand())
 {

 FileSender fs = new FileSender(file[nf], dhd.getAddress(), tPort);

 if(fs.sendFile())
 {

 //Package delivered, make the DataHost active again

 Commands c2 = new Commands(mn.getID(), 0, 25, f[nf], (int)leng[nf]);

 CommandSender cs2 = new CommandSender(dhd.getAddress(), DHPORT, c2);

 if(cs2.sendCommand())

 {

 children[nf].add(new Long(dhd.getID()));

 dhl.update(new DHInfo(dhd.getID(), dhd.getAddress()));

 writeFile(dhl, DHINFO);

 numComplete++;

 }

 }

 else //if the file not sent

 {

 //Failed to send a package, but make the DataHost active again

 Commands c3 = new Commands(dhd.getID(), 0, 26);

 CommandSender cs3 = new CommandSender(dhd.getAddress(), DHPORT,
c3);

 cs3.sendCommand();

 attempts++;

 if(attempts<TRIALS * numFiles)

 System.out.println("Distribution of files failed, trying
alternatives...");

 else

 {

 System.out.println("Distribution of files failed");

 exit = true;

 }

 }
 }//end
if(cs1.sendCommand())
 }//end try
 catch(Exception e)
 {

 attempts++;

 if(attempts<TRIALS * numFiles)

 System.out.println("Distribution of files failed, trying alternatives...");
 else
 {

 41

 System.out.println("Distribution of files failed");
 exit =
true;
 }
 }
 }//end for
 }//end else
 }//end while
 if(numComplete >= numHosts)
 System.out.println(f[nf] + " distributed
successfully");
 else
 System.out.println(f[nf] + " not distributed
successfully");
 }//end for
 File reqdh = new File("reqdh.dat");
 reqdh.delete();

 dht.setChildren1(children[0]);
 dht.setChildren2(children[1]);

 writeFile(dht, parent + ".dat");
 }//end try
 catch(Exception e){}
 }

 private Object readFile(String fName) throws Exception
 {
 //attempt to read a file
 try
 {
 System.out.println("Reading " + fName);
 FileInputStream fis = new FileInputStream(fName);
 ObjectInputStream ois = new ObjectInputStream(fis);
 Object o = ois.readObject();

 ois.close();
 fis.close();

 return o;
 }
 catch(Exception e)
 {
 System.out.println(fName + " could not be read.");
 return null;
 }
 }

 private void writeFile(Object o, String fName)
 {
 try
 {
 FileOutputStream fos = new FileOutputStream(fName);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);
 oos2.writeObject(o);
 oos2.flush();

 System.out.println(fName + " written");

 oos2.close();
 fos.close();
 }
 catch(Exception e)
 {
 System.out.println("Cannot write to file: " + fName);
 }
 }
}

 42

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

DataOwner, Manager, DataHost - FileReceiver.java

Class that receives a file sent by FileSender class
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

public class FileReceiver extends Thread
{
 private int port;
 private ServerSocket frServer;
 private InetAddress client = null;
 private String fName = "";
 private long fLeng = -1;
 private final int TIMEOUT = 60 * 1000;

 public FileReceiver(InetAddress cl, int p, String name, long leng)
 {
 try
 {
 client = cl;
 port = p;
 fName = name;
 fLeng = leng;

 frServer = new ServerSocket(port);
 frServer.setSoTimeout(TIMEOUT);
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }

 public void run()
 {
 try
 {
 boolean connected = false;

 Socket incoming = null;

 System.out.println("Server listening on port " + port + " for file
transfer...");

 while(!connected)
 {
 incoming = frServer.accept();
 incoming.setSoTimeout(TIMEOUT);

 InetAddress iAD = incoming.getInetAddress();

 if(client.equals(iAD))
 {
 connected = true;
 System.out.println("Accepted a
connection from " + iAD);
 }
 else
 {
 System.out.println("Denying a
connection from " + iAD);
 incoming.close();
 }
 }

 try
 {
 OutputStreamWriter osw = new
OutputStreamWriter(incoming.getOutputStream());

 File file = new File(fName);
 FileWriter out = new FileWriter(file);
 InputStreamReader isr = new
InputStreamReader(incoming.getInputStream());
 BufferedReader br = new BufferedReader(isr);
 long length = 0;
 int c;

 while((c=br.read()) != -1)
 {
 out.write(c);
 length ++;
 }

 out.flush();
 out.close();

 43

 int success;

 if(length == fLeng)
 {
 System.out.println("File received successfully: "
+ fName);
 System.out.println("File size: " + fLeng);
 success = 1;
 }
 else
 {
 System.out.println(file.length() + "File corrupt,
removing: " + fName);
 success = 0;
 file.delete();
 }

 osw.write(success);
 osw.flush();
 osw.close();
 }
 catch(Exception e1)
 {
 try
 {
 incoming.close();
 }

 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
 }
 catch(Exception e){}
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

DataOwner, Manager, DataHost - FileSender.java

Class that sends a file through a specified port
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

public class FileSender
{
 private int port;
 private Socket fsSocket;
 private File file = null;
 private String addrs = "";
 private final int TIMEOUT = 60 * 1000;

 public FileSender(File f, String a, int p)
 {
 try
 {
 file = f;
 addrs = a;
 port = p;

 fsSocket = new Socket(addrs, port);
 fsSocket.setSoTimeout(TIMEOUT);
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }

 public boolean sendFile()
 {
 try
 {
 System.out.println("Sending " + file.getName() + " to " +
addrs);
 FileReader in = new FileReader(file);

 44

 OutputStreamWriter osw = new
OutputStreamWriter(fsSocket.getOutputStream());
 int c;

 while ((c = in.read()) != -1)
 {
 osw.write(c);
 }

 osw.flush();
 fsSocket.shutdownOutput();
 in.close();

 InputStreamReader isr = new
InputStreamReader(fsSocket.getInputStream());

 int success = (int) isr.read();

 fsSocket.close();

 if(success == 1)
 {
 System.out.println("File " + file.getName() + " sent
successfully to " + addrs);
 return true;
 }
 else
 {
 System.out.println("File " + file.getName() + " not sent to "
+ addrs);
 return false;
 }
 }
 catch(Exception e)
 {
 System.out.println("File " + file.getName() + " not sent to " + addrs);
 System.out.println(e);
 return false;
 }
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

Service Provider, DataOwner, Manager, DataHost - FileTracker.java

Keeps track of to whom the files belong
**/

import java.io.*;
import java.util.*;

public class FileTracker implements Serializable
{
 private Vector files = new Vector();
 private long parentID = -1;
 private Date created = null;

 public FileTracker(String f1, String f2, long id)
 {
 files.add(f1);
 if(f2 != null)
 files.add(f2);
 parentID = id;
 created = new Date();
 }

 public FileTracker(String f, long id)
 {
 files.add(f);
 parentID = id;
 created = new Date();
 }

 public long getParent()
 {
 return parentID;
 }

 public Vector getFiles()
 {
 return files;
 }
}

 45

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

ServiceProvider - ListConsole.java

Class that manipulates the lists owned by ServiceProvider
**/

import java.io.*;
import java.util.*;

public class ListConsole
{
 private final String MANAGERS = "ManagerList.dat";
 private final String DATAHOSTS = "DataHostList.dat";
 private final String DATAOWNERS = "DataOwnerList.dat";

 private Vector mnList;
 private Vector dhList;
 private Vector doList;

 public ListConsole() throws Exception
 {
 //attempt to read data from ManagerList.dat
 try
 {
 System.out.println("Reading " + MANAGERS);
 FileInputStream fis = new FileInputStream(MANAGERS);
 ObjectInputStream ois = new ObjectInputStream(fis);
 mnList = (Vector) ois.readObject();

 ois.close();
 fis.close();
 }
 catch(Exception e)
 {
 System.out.println("Unable to read " + MANAGERS + ", updating
Manager List");
 mnList = new Vector();

 writeMNList();
 }

 //attempt to read data from DataHostList.dat
 try

 {
 System.out.println("Reading " + DATAHOSTS);
 FileInputStream fis = new
FileInputStream(DATAHOSTS);
 ObjectInputStream ois = new ObjectInputStream(fis);
 dhList = (Vector) ois.readObject();

 ois.close();
 fis.close();
 }
 catch(Exception e)
 {
 System.out.println("Unable to read " + DATAHOSTS + ",
updating DataHost List");
 dhList = new Vector();

 writeDHList();
 }

 //attempt to read data from DataOwnerList.dat
 try
 {
 System.out.println("Reading " + DATAOWNERS);
 FileInputStream fis = new
FileInputStream(DATAOWNERS);
 ObjectInputStream ois = new ObjectInputStream(fis);
 doList = (Vector) ois.readObject();

 ois.close();
 fis.close();
 }
 catch(Exception e)
 {
 System.out.println("Unable to read " + DATAOWNERS +
", updating DataOwner List");
 doList = new Vector();

 writeDOList();
 }
 }

 private void writeMNList() throws Exception
 {
 try
 {
 FileOutputStream fos = new FileOutputStream(MANAGERS);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(mnList);

 46

 oos.flush();

 System.out.println(MANAGERS + " updated");

 oos.close();
 fos.close();
 }
 catch(Exception e)
 {
 System.out.println("Failed to update " + MANAGERS);
 }

 //print the resulting ManagerList
 System.out.println("Currently there are " + mnList.size() + " Managers:");
 for(int i=0; i<mnList.size(); i++)
 {
 ManagerData mnd = (ManagerData) mnList.get(i);
 System.out.println("ManagerID " + mnd.getID() + " has " +
mnd.getNumOwner() + "/" + mnd.getCapacity() + " owners");
 }
 }

 private void writeDHList() throws Exception
 {
 try
 {
 FileOutputStream fos = new FileOutputStream(DATAHOSTS);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(dhList);
 oos.flush();

 System.out.println(DATAHOSTS + " updated");

 oos.close();
 fos.close();
 }
 catch(Exception e)
 {
 System.out.println("Failed to update " + DATAHOSTS);
 }

 //print the resulting DataHostList
 System.out.println("Currently there are " + dhList.size() + " DataHosts:");
 for(int i=0; i<dhList.size(); i++)
 {
 DataHostData dhd = (DataHostData) dhList.get(i);
 System.out.println("DataHostID " + dhd.getID() + " has " +
dhd.getAvailable() + "/" + dhd.getCapacity() + " bytes available");

 }
 }

 private void writeDOList() throws Exception
 {
 try
 {
 FileOutputStream fos = new FileOutputStream(DATAOWNERS);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(doList);
 oos.flush();

 System.out.println(DATAOWNERS + " updated");

 oos.close();
 fos.close();
 }
 catch(Exception e)
 {
 System.out.println("Failed to update " + DATAOWNERS);
 }

 //print the resulting DataOwnerList
 System.out.println("Currently there are " + doList.size() + "
DataOwners:");
 for(int i=0; i<doList.size(); i++)
 {
 DataOwnerData dod = (DataOwnerData) doList.get(i);
 System.out.println("DataOwnerID " + dod.getID());
 }
 }

 public void addManager(ManagerData mn) throws Exception
 {
 synchronized(mnList)
 {
 //insert the Manager at the appropriate location in the List
 try
 {
 removeMN(mn.getID());
 }
 catch(Exception e)
 {
 System.out.println("Adding Manager to the
list...");
 }

 insertManager(mn, 0, mnList.size()-1);

 47

 //write the List to a file
 writeMNList();
 }
 }

 private void insertManager(ManagerData mn, int i, int j)
 {
 int indexAvailable;

 if(j < 0)
 {
 mnList.add(i, mn);
 return;
 }

 else if(i == j)
 {
 if(((ManagerData)(mnList.get(i))).getAvailable() >
mn.getAvailable())
 mnList.add(i+1, mn);
 else
 mnList.add(i, mn);

 return;
 }

 indexAvailable = ((ManagerData)(mnList.get(1+(i+j)/2))).getAvailable();

 if(indexAvailable < mn.getAvailable())
 insertManager(mn, i, (i+j)/2);

 else
 insertManager(mn, 1+(i+j)/2, j);

 return;
 }

 public void addDataHost(DataHostData dhd) throws Exception
 {
 synchronized(dhList)
 {
 //insert the DataHost at the appropriate location in the List
 try
 {
 removeDH(dhd.getID());
 }
 catch(Exception e)

 {
 System.out.println("Adding DataHost to the
list...");
 }

 insertDataHost(dhd, 0, dhList.size()-1);

 //write the List to a file
 writeDHList();
 }
 }

 private void insertDataHost(DataHostData dh, int i, int j)
 {
 int indexCapacity;

 if(j < 0)
 {
 dhList.add(i, dh);
 return;
 }

 else if(i == j)
 {
 if(((DataHostData)(dhList.get(i))).getCapacity() >
dh.getCapacity())
 dhList.add(i+1, dh);
 else
 dhList.add(i, dh);

 return;
 }

 indexCapacity =
((DataHostData)(dhList.get(1+(i+j)/2))).getCapacity();

 if(indexCapacity < dh.getCapacity())
 insertDataHost(dh, i, (i+j)/2);

 else
 insertDataHost(dh, 1+(i+j)/2, j);

 return;
 }

 public void addDataOwner(DataOwnerData dod) throws Exception
 {
 synchronized(doList)

 48

 {
 //insert the DataOwner at the appropriate location in the List
 insertDataOwner(dod, 0, doList.size()-1);

 //write the List to a file
 writeDOList();
 }
 }

 private void insertDataOwner(DataOwnerData dod, int i, int j)
 {
 long indexID;

 if(j < 0)
 {
 doList.add(i, dod);
 return;
 }

 else if(i == j)
 {
 if(((DataOwnerData)(doList.get(i))).getID() < dod.getID())
 doList.add(i+1, dod);
 else
 doList.add(i, dod);

 return;
 }

 indexID = ((DataOwnerData)(doList.get(1+(i+j)/2))).getID();

 if(indexID < dod.getID())
 insertDataOwner(dod, i, (i+j)/2);

 else
 insertDataOwner(dod, 1+(i+j)/2, j);

 return;
 }

 public DataOwnerData getDO(long id)
 {
 DataOwnerData dod;

 synchronized(doList)
 {
 dod = findDO(id, 0, doList.size()-1);
 }

 return dod;
 }

 public ManagerData getMN(long id)
 {
 ManagerData mn = null;

 synchronized(mnList)
 {
 mn = findMN(id);
 }

 return mn;
 }

 public Vector getMN(int req, int offset)
 {
 try
 {
 int grabbed = 0;
 int index = 0;

 Vector mnGrabbed = new Vector();

 while(grabbed < req)
 {
 ManagerData mn = (ManagerData)
mnList.get((index + offset)%mnList.size());
 mnGrabbed.add(mn);
 grabbed++;
 index++;
 }

 return mnGrabbed;
 }
 catch(Exception e)
 {
 System.out.println("Requested number of managers not
grabbed.");
 return new Vector();
 }
 }

 public Vector getDH(int req, int offset)
 {
 try
 {

 49

 int grabbed = 0;
 int index = 0;

 Vector dhGrabbed = new Vector();

 while(grabbed < req)
 {
 DataHostData dhd = (DataHostData) dhList.get((index +
offset)%dhList.size());
 dhGrabbed.add(dhd);
 grabbed++;
 index++;
 }

 return dhGrabbed;
 }
 catch(Exception e)
 {
 System.out.println("Requested number of data hosts not grabbed.");
 return new Vector();
 }
 }

 //verification of components
 public boolean checkDOIdentity(long id, double key)
 {
 DataOwnerData dod;

 synchronized(doList)
 {
 dod = findDO(id, 0, doList.size()-1);
 }
 if(dod.getKey() == key)
 return true;
 else
 {
 System.out.println("DataOwner not identified");
 return false;
 }
 }

 private DataOwnerData findDO(long id, int i, int j)
 {
 long indexID;

 if(j < 0)
 {
 return new DataOwnerData(-1, -1, "");

 }

 else if(i == j)
 {
 DataOwnerData dod = (DataOwnerData)(doList.get(i));
 if(dod.getID() == id)
 return dod;
 else return new DataOwnerData(0,0,"");
 }

 indexID = ((DataOwnerData)(doList.get(1+(i+j)/2))).getID();

 if(indexID > id)
 return findDO(id, i, (i+j)/2);

 else
 return findDO(id, 1+(i+j)/2, j);
 }

 public DataOwnerData removeDO(long id)
 {
 DataOwnerData dod;

 synchronized(doList)
 {
 dod = findDO(id, 0, doList.size()-1);
 doList.remove(dod);
 }

 return dod;
 }

 public boolean checkMNIdentity(long id, double key)
 {
 ManagerData mn;

 synchronized(mnList)
 {
 mn = findMN(id);
 }
 if(mn.getKey() == key)
 {
 return true;
 }
 else
 {
 System.out.println("Manager not identified");
 return false;

 50

 }
 }

 private ManagerData findMN(long id)
 {
 ManagerData mn;
 try
 {
 int index = 0;

 while(true)
 {
 mn = (ManagerData) mnList.get(index);
 if(mn.getID() == id)
 return mn;
 index++;
 }
 }
 catch(Exception e)
 {
 System.out.println(e);
 System.out.println("The specified Manager is not in the list");
 ManagerData nmn = new ManagerData(-1, -1, -1,"");
 return nmn;
 }
 }

 public ManagerData removeMN(long id)
 {
 ManagerData mn = null;

 mn = findMN(id);
 mnList.remove(mn);

 return mn;
 }

 public boolean checkDHIdentity(long id, double key)
 {
 DataHostData dhd;

 synchronized(dhList)
 {
 dhd = findDH(id);
 }
 if(dhd.getKey() == key)
 return true;
 else

 {
 System.out.println("DataHost not identified");
 return false;
 }
 }

 private DataHostData findDH(long id)
 {
 DataHostData dhd;
 try
 {
 int index = 0;

 while(true)
 {
 dhd = (DataHostData) dhList.get(index);
 if(dhd.getID() == id)
 return dhd;
 index++;
 }
 }
 catch(Exception e)
 {
 System.out.println(e);
 System.out.println("The specified DataHost is not in the
list");
 DataHostData ndhd = new DataHostData(-1, -1, -1,"");
 return ndhd;
 }
 }

 public DataHostData removeDH(long id)
 {
 DataHostData dhd = null;

 dhd = findDH(id);
 dhList.remove(dhd);

 return dhd;
 }
}

 51

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

ServiceProvider, DataOwner, Manager, DataHost - ManagerData.java

Object that stores information on a Manager
**/

import java.io.*;
import java.util.*;

public class ManagerData implements Serializable
{
 private long id = 0;
 private double key = 0;
 private int numOwner = 0;
 private int capacity = 0;
 private String addrs = "";
 private Vector fTracker = null;
 private boolean active = true;

 public ManagerData(long i, double k, int n, String s)
 {
 id = i;
 key = k;
 capacity = n;
 addrs = s.substring(1);
 fTracker = new Vector();
 }

 public long getID()
 {
 return id;
 }

 public double getKey()
 {
 return key;
 }

 public int getNumOwner()
 {
 return numOwner;
 }

 public int getCapacity()
 {
 return capacity;
 }

 public int getAvailable()
 {
 return capacity - numOwner;
 }

 public String getAddress()
 {
 return addrs;
 }

 public Vector getFiles(long ID)
 {
 try
 {
 FileTracker ft = null;
 int index = 0;

 while(true)
 {
 ft = (FileTracker) fTracker.get(index);
 if(ft.getParent() == ID)
 {
 return ft.getFiles();
 }

 index++;
 }
 }
 catch(Exception e)
 {
 System.out.println(e);
 return new Vector();
 }
 }

 public boolean isActive()
 {
 return active;
 }

 public void incNumOwner()
 {
 numOwner++;

 52

 }

 public void decNumOwner()
 {
 numOwner--;
 if(numOwner < 0)
 numOwner = 0;
 }

 public void updateTracker(Vector v)
 {
 fTracker = v;
 }

 public void setAddress(String s)
 {
 addrs = s.substring(1);
 }

 public void addTracker(FileTracker ft)
 {
 fTracker.add(ft);
 }

 public void setActive()
 {
 active = true;
 }

 public void setInactive()
 {
 active = false;
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

Manager - ManagerDriver.java

Driver class for a Manager
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

public class ManagerDriver
{
 private final int CAPACITY = 10;
 private final String FILE = "Manager.dat";
// private final String ADDRS = "127.0.0.1";
// private final String ADDRS = "136.167.212.93";
 private final String ADDRS = "136.167.117.84"; //IP Address of
ServiceProvider
 private final int SPPORT = 3000;
 private final int TIMEOUT = 60 * 1000;

 private ManagerData data;

 public ManagerDriver()
 {
 }

 public static void main(String argv[]) throws Exception
 {
 //
 System.out.println("Boston College");
 System.out.println("Computer Science Department");
 System.out.println();
 System.out.println("Senior Thesis 2003");
 System.out.println("Distributed Data Storage: Data Backup Over
Networks");
 System.out.println("(c) Hiroyuki Hayano");
 System.out.println("Prof. Elizabeth Borowsky");
 System.out.println();
 System.out.println();
 //

 53

 MNCommandListener cl = new MNCommandListener();
 cl.start();

 ManagerDriver mn = new ManagerDriver();
 mn.startSession();
 }

 private void startSession() throws Exception
 {
 readData();

 if(data==null)
 {
 System.out.println("Data file not found or corrupt, setting up
Manager...");
 setupManager();
 }

 //Tell ServiceProvider that I'm online
 data.setActive();
 writeFile(data, FILE);
 Commands c = new Commands(data.getID(), data.getKey(), 22, data);
 CommandSender cs = new CommandSender(ADDRS, c);
 cs.sendCommand();
 }

 private void readData() throws Exception
 {
 //attempt to read data from Manager.dat
 try
 {
 System.out.println("Reading " + FILE);
 FileInputStream fis = new FileInputStream(FILE);
 ObjectInputStream ois = new ObjectInputStream(fis);
 data = (ManagerData) ois.readObject();

 ois.close();
 fis.close();
 }
 catch(Exception e)
 {
 data = null;
 }
 }

 private void writeFile(Object o, String fName)
 {

 try
 {
 FileOutputStream fos = new FileOutputStream(fName);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);
 oos2.writeObject(o);
 oos2.flush();

 System.out.println(fName + " written");

 oos2.close();
 fos.close();
 }
 catch(Exception e)
 {
 System.out.println("Cannot write to file: " + fName);
 }
 }

 private void setupManager() throws Exception
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 Socket socket = null;

 Commands command = new Commands(-1, -1, 20, CAPACITY);

 try
 {
 // open a socket connection
 socket = new Socket(ADDRS, SPPORT);
 socket.setSoTimeout(TIMEOUT);

 // open I/O streams for objects
 oos = new ObjectOutputStream(socket.getOutputStream());
 ois = new ObjectInputStream(socket.getInputStream());

 //send the command
 oos.writeObject(command);
 oos.flush();

 //receive the unique id
 data = (ManagerData) ois.readObject();

 oos.close();
 ois.close();

 //write the data to Manager.dat
 synchronized(data)

 54

 {
 FileOutputStream fos = new FileOutputStream(FILE);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);
 oos2.writeObject(data);
 oos2.flush();

 System.out.println(FILE + " created");

 oos2.close();
 fos.close();
 }

 System.out.println("Manager setup complete");
 System.out.println("ID: " + data.getID());
 System.out.println("Maximum number of Owners: " + CAPACITY);
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

Manager - MNCommandListener.java

Listens for commands sent by CommandSender
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

public class MNCommandListener extends Thread
{
 private final int MYPORT = 3002;
 private ServerSocket mnServer;

 public MNCommandListener(){}

 public void run()
 {
 try
 {
 mnServer = new ServerSocket(MYPORT);
 System.out.println("CommandListner listening on port " +
MYPORT);
 }
 catch(Exception e){}

 while(true)
 {
 try
 {
 System.out.println("Waiting for incoming commands...");
 Socket incoming = mnServer.accept();
 System.out.println("Accepted a connection from " +
incoming.getInetAddress());
 MNConnect c = new MNConnect(incoming);
 }
 catch(Exception e) {}
 }
 }
}

 55

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

Manager - MNConnect.java

Class that processes incoming commands
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

class MNConnect extends Thread
{
 private Socket incoming = null;
 private ObjectInputStream ois = null;
 private ObjectOutputStream oos = null;
 private Commands command = null;
 private final long SVID = 761985762;
 private final double SVKEY = 856019204;
 private final String FILE = "Manager.dat";
 private final String DHINFO = "DHInfo.dat";
// private final String ADDRS = "127.0.0.1";
// private final String ADDRS = "136.167.212.93";
 private final String ADDRS = "136.167.117.84"; //IP Address of ServiceProvider
 private final int DOPORT = 3001;
 private final int DHPORT = 3003;
 private final int TIMEOUT = 60 * 1000;

 public MNConnect() {}

 public MNConnect(Socket incomingSocket)
 {
 try
 {
 incoming = incomingSocket;
 incoming.setSoTimeout(TIMEOUT);

 ois = new ObjectInputStream(incoming.getInputStream());
 oos = new ObjectOutputStream(incoming.getOutputStream());
 }
 catch(Exception e1)
 {
 try

 {
 incoming.close();
 }

 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }

 return;
 }

 this.start();
 }

 public void run()
 {
 try
 {
 int flag = 0;
 command = (Commands) ois.readObject();

 int c = command.getCommand();
 System.out.println("Incoming command: " + c);

 if(command.getID() == SVID && command.getKey() == SVKEY)
 {
 if(c==1)
 {
 ManagerData mn = (ManagerData)
readFile(FILE);

 if(mn.isActive() && mn.getAvailable()
> 0)
 {
 mn.setInactive();
 flag = updateFile(FILE, mn);
 }
 else flag = -1;
 }

 if(c==4)
 {
 Vector v = (Vector)
command.getObject();
 command.clearObject();
 writeFile(v, "reqdh.dat");

 56

 flag = 1;
 }

 if(c==5)
 {
 try
 {
 ManagerData mn = (ManagerData)
readFile(FILE);
 DHLocator dhl = (DHLocator)
readFile(DHINFO);

 String address = command.getString();
 long doID = command.getLong();

 DHTracker dht = (DHTracker)
readFile(doID + ".dat");
 Vector file = mn.getFiles(doID);

 Vector dhIDf1 = dht.getChildren1();
 Vector dhIDf2 = dht.getChildren2();

 while(true)
 {
 long dhID =
((Long)dhIDf1.remove(0)).longValue();
 String dhADD =
dhl.getAddress(dhID);

 Commands c1 = new
Commands(0, 0, 27, (String)file.get(0));
 CommandSender cs1 = new
CommandSender(dhADD, DHPORT, c1);
 if(cs1.sendCommand())
 {
 File f = new
File((String)file.get(0));

 int tPort = 3004 +
(int) (Math.random() * 1000.0);
 Commands c2 =
new Commands(0, 0, 28, (String)file.get(0), f.length(), tPort);
 CommandSender
cs2 = new CommandSender(address, DOPORT, c2);

 if(cs2.sendCommand())
 {

 int trial = 0;

 while(trial < 10)

 {

 FileSender fs = new FileSender(f, address, tPort);

 if(fs.sendFile())

 trial = 11;

 else

 trial++;

 }

 break;
 }
 else
break;
 }
 }

 if(!dhIDf2.isEmpty())
 {
 while(true)
 {
 long
dhID2 = ((Long)dhIDf2.remove(0)).longValue();
 String
dhADD2 = dhl.getAddress(dhID2);

 Commands c1 = new Commands(0, 0, 27, (String)file.get(1));

 CommandSender cs1 = new CommandSender(dhADD2, DHPORT, c1);

 if(cs1.sendCommand())
 {

 File f = new File((String)file.get(1));

 int tPort = 3004 + (int) (Math.random() * 1000.0);

 57

 Commands c2 = new Commands(0, 0, 28, (String)file.get(1), f.length(), tPort);

 CommandSender cs2 = new CommandSender(address, DOPORT, c2);

 if(cs2.sendCommand())
 {

 int trial = 0;

 while(trial < 10)

 {

 FileSender fs = new FileSender(f, address, tPort);

 if(fs.sendFile())

 trial = 11;

 else

 trial++;

 }

 break;
 }
 else
break;
 }
 }
 }
 flag = 1;
 }
 catch(Exception e)
 {
 System.out.println(e);
 flag = -1;
 }
 }
 }

 else if(c == 13)
 {
 FileReceiver fr = new
FileReceiver(incoming.getInetAddress(), command.getNum2(), command.getString(),
command.getLong());

 fr.start();
 flag = 1;
 }

 else if(c == 14)
 {
 String f1 = command.getString();
 String f2 = command.getString2();

 FileTracker ft = new FileTracker(f1, f2,
command.getID());

 ManagerData mn = (ManagerData)
readFile(FILE);
 mn.addTracker(ft);
 mn.incNumOwner();
 mn.setActive();

 flag = updateFile(FILE, mn);

 Commands cm = new Commands(mn.getID(),
mn.getKey(), 22, mn);
 CommandSender cs = new
CommandSender(ADDRS, cm);
 cs.sendCommand();

 //now distribute the files to data hosts
 FileDistributer fd = new
FileDistributer(command.getID(), f1, f2);
 }

 else if(c == 16)
 {
 ManagerData mn = (ManagerData)
readFile(FILE);
 mn.setActive();

 flag = updateFile(FILE, mn);

 Commands cm = new Commands(mn.getID(),
mn.getKey(), 22, mn);
 CommandSender cs = new
CommandSender(ADDRS, cm);
 cs.sendCommand();
 }

 else if(c == 33)
 {

 58

 FileReceiver fr = new
FileReceiver(incoming.getInetAddress(), command.getNum2(), command.getString(),
command.getLong());
 fr.start();
 flag = 1;
 }

 //send ACK or NAK
 if(flag == 1)
 {
 oos.writeObject(command);
 oos.flush();
 }
 else
 {
 oos.writeObject(new Commands(0,0,0));
 oos.flush();
 }
 }
 catch(Exception e){}
 }

 private Object readFile(String fName) throws Exception
 {
 //attempt to read a file
 try
 {
 System.out.println("Reading " + fName);
 FileInputStream fis = new FileInputStream(fName);
 ObjectInputStream ois = new ObjectInputStream(fis);
 Object o = ois.readObject();

 ois.close();
 fis.close();

 return o;
 }
 catch(Exception e)
 {
 System.out.println(fName + " could not be read.");
 return null;
 }
 }

 private void writeFile(Object o, String fName)
 {
 try
 {

 FileOutputStream fos = new FileOutputStream(fName);
 ObjectOutputStream oos2 = new ObjectOutputStream(fos);
 oos2.writeObject(o);
 oos2.flush();

 System.out.println(fName + " written");

 oos2.close();
 fos.close();
 }
 catch(Exception e)
 {
 System.out.println("Cannot write to file: " + fName);
 }
 }

 private int updateFile(String fOld, Object nContent)
 {
 synchronized(nContent)
 {
 try
 {
 File f = new File(fOld);
 File tmp = new File("temp.tmp");

 FileOutputStream fos = new
FileOutputStream(tmp);
 ObjectOutputStream oos2 = new
ObjectOutputStream(fos);
 oos2.writeObject(nContent);
 oos2.flush();

 oos2.close();
 fos.close();

 f.delete();
 tmp.renameTo(f);

 System.out.println(fOld + " updated");

 return 1;
 }
 catch(Exception e)
 {
 System.out.println(e);
 System.out.println(fOld + " could not be
updated");
 return -1;

 59

 }
 }
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

ServiceProvider - ServiceProviderDriver.java

Driver class for ServiceProvider
**/

import java.io.*;
import java.net.*;
import java.util.*;

public class ServiceProviderDriver
{
 private final int MYPORT = 3000;
 private ServerSocket spServer;

 public ListConsole list = new ListConsole();

 public static void main(String argv[]) throws Exception
 {
 //
 System.out.println("Boston College");
 System.out.println("Computer Science Department");
 System.out.println();
 System.out.println("Senior Thesis 2003");
 System.out.println("Distributed Data Storage: Data Backup Over
Networks");
 System.out.println("(c) Hiroyuki Hayano");
 System.out.println("Prof. Elizabeth Borowsky");
 System.out.println();
 System.out.println();
 //

 new ServiceProviderDriver();
 }

 public ServiceProviderDriver() throws Exception
 {
 spServer = new ServerSocket(MYPORT);
 System.out.println("Server listening on port " + MYPORT);
 startServer();
 }

 public void startServer()

 60

 {
 while(true)
 {
 try
 {
 System.out.println("Waiting for connections...");
 Socket incoming = spServer.accept();
 System.out.println("Accepted a connection from " +
incoming.getInetAddress());
 SPConnect c = new SPConnect(incoming, list, new Date());
 }
 catch(Exception e) {}
 }
 }
}

/**
Senior Thesis 2003
Hiroyuki Hayano
Distributed Data Storage: Data Backup Over Networks
Prof. Elizabeth Borowsky

ServiceProvider - SPConnect.java

Class that processes incoming commands
**/

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

class SPConnect extends Thread
{
 private final int DOPORT = 3001;
 private final int MNPORT = 3002;
 private final int DHPORT = 3003;
 private Socket incoming = null;
 private ObjectInputStream ois = null;
 private ObjectOutputStream oos = null;
 private Commands command = null;
 private ListConsole list = null;
 private Date dt;
 private final long SVID = 761985762;
 private final double SVKEY = 856019204;
 private final int TIMEOUT = 60 * 1000;

 public SPConnect() {}

 public SPConnect(Socket incomingSocket, ListConsole l, Date date)
 {
 try
 {
 incoming = incomingSocket;
 incoming.setSoTimeout(TIMEOUT);
 list = l;
 dt = date;

 ois = new ObjectInputStream(incoming.getInputStream());
 oos = new ObjectOutputStream(incoming.getOutputStream());
 }
 catch(Exception e1)
 {
 try

 61

 {
 incoming.close();
 }

 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }

 return;
 }

 this.start();
 }

 public void run()
 {
 try
 {
 int flag = 0;
 command = (Commands) ois.readObject();

 int c = command.getCommand();
 System.out.println("Incoming command: " + c);
 if(command.getID() == -1)
 {
 setup();
 }

 else if(c-c%10 == 10 && list.checkDOIdentity(command.getID(), command.getKey()))
 {
 if(c==11)
 {
 flag = doNewFile();
 }

 if(c==12)
 {
 Vector managers = grabManagers();
 Commands c2 = new Commands(SVID,
SVKEY, 2, managers);
 CommandSender cs = new
CommandSender((""+incoming.getInetAddress()).substring(1), DOPORT, c2);
 if(cs.sendCommand())
 {
 flag = 1;
 }

 }

 if(c==15)
 {
 flag = doNewManager();
 }

 if(c==17)
 {
 flag = retrieveFiles();
 }
 }

 else if(c-c%10 == 20 && list.checkMNIdentity(command.getID(),
command.getKey()))
 {
 if(c==22)
 {
 flag = mnConnect();
 }

 if(c==23)
 {
 Vector datahosts = grabDataHosts();
 Commands c3 = new
Commands(SVID, SVKEY, 4, datahosts);
 CommandSender cs3 = new
CommandSender((""+incoming.getInetAddress()).substring(1), MNPORT, c3);
 if(cs3.sendCommand())
 {
 flag = 1;
 }
 }

 }

 else if(c-c%10 == 30 && list.checkDHIdentity(command.getID(),
command.getKey()))
 {
 if(c==32)
 {
 flag = dhConnect();
 }
 }

 //send ACK or NAK
 if(flag == 1)
 {

 62

 oos.writeObject(command);
 oos.flush();
 }
 else
 {
 oos.writeObject(new Commands(0,0,0));
 oos.flush();
 }

 // close streams and connections
 ois.close();
 oos.close();
 incoming.close();
 }
 catch(Exception e) {}
 }

 private void setup() throws Exception
 {
 if(command.getCommand() == 10)
 {
 System.out.println("Setting up DataOwner...");
 Date dt = new Date();
 DataOwnerData dataOwner = new DataOwnerData(dt.getTime(),
Math.random(), "" + incoming.getInetAddress());
 oos.writeObject(dataOwner);
 oos.flush();

 //add dataOwner to DataOwnerList
 list.addDataOwner(dataOwner);

 System.out.println("DataOwner set up with ID " + dt.getTime());
 }

 else if(command.getCommand() == 20)
 {
 System.out.println("Setting up Manager...");
 ManagerData manager = new ManagerData(dt.getTime(),
Math.random(), command.getNum(), "" + incoming.getInetAddress());
 oos.writeObject(manager);
 oos.flush();

 //add manager to ManagerList
 list.addManager(manager);

 System.out.println("Manager set up with ID " + dt.getTime());

 }

 else if(command.getCommand() == 30)
 {
 System.out.println("Setting up DataHost...");
 Date dt = new Date();
 DataHostData dataHost = new DataHostData(dt.getTime(),
Math.random(), command.getNum(), "" + incoming.getInetAddress());
 oos.writeObject(dataHost);
 oos.flush();

 //add dataHost to DataHostList
 list.addDataHost(dataHost);

 System.out.println("DataHost set up with ID " +
dt.getTime());
 }

 else
 {
 System.out.println("Unrecognized command from " +
incoming.getInetAddress());
 }
 }

 //Actions for DataOwner---
 private int doNewFile()
 {
 try
 {
 DataOwnerData dod = list.removeDO(command.getID());
 dod.setFileName(command.getString());
 list.addDataOwner(dod);
 return 1;
 }
 catch(Exception e)
 {
 System.out.println(e);
 return -1;
 }
 }

 private int doNewManager()
 {
 try
 {
 DataOwnerData dod = list.removeDO(command.getID());

 63

 dod.addManager(command.getLong());
 list.addDataOwner(dod);
 return 1;
 }
 catch(Exception e)
 {
 System.out.println(e);
 return -1;
 }
 }

 private int retrieveFiles()
 {
 try
 {
 Vector managers = null;
 long dodID = -1;
 String dodADD = "";
 DataOwnerData dod = list.getDO(command.getID());

 managers = dod.getManagers();
 dodID = dod.getID();
 dodADD = (""+incoming.getInetAddress()).substring(1);

 for(int i = 0; i<managers.size(); i++)
 {
 long mID = ((Long)(managers.get(i))).longValue();
 ManagerData mn = list.getMN(mID);
 Commands c = new Commands(SVID, SVKEY, 5,
dodADD, dodID);
 CommandSender cs = new
CommandSender(mn.getAddress(), MNPORT, c);
 cs.sendCommand();
 }

 return 1;
 }
 catch(Exception e)
 {
 System.out.println(e);
 return -1;
 }
 }

 private Vector grabManagers()
 {
 try
 {

 int numReq = command.getNum();
 int numGotten = 0;
 int offset = 0;
 Vector managers = new Vector();
 Vector temp = new Vector();

 while(numGotten < numReq)
 {
 int numIndex = numReq - numGotten;

 temp = list.getMN(numIndex, offset);

 for(int i = 0; i<numIndex; i++)
 {
 ManagerData mn = (ManagerData)
temp.get(i);
 Commands c = new Commands(SVID,
SVKEY, 1);
 CommandSender cs = new
CommandSender(mn.getAddress(), MNPORT, c);
 if(cs.sendCommand())
 {
 managers.add(mn);
 numGotten ++;
 }
 }
 offset += numReq;
 if(offset > (numReq * 10))
 return new Vector();
 }

 return managers;
 }
 catch(Exception e)
 {
 return new Vector();
 }
 }

 //Actions for Manager---
 private int mnConnect()
 {
 try
 {
 ManagerData mn = (ManagerData) command.getObject();
 command.clearObject();

 //routine update of information on Manager

 64

 mn.setAddress("" + incoming.getInetAddress());

 list.addManager(mn);
 return 1;
 }
 catch(Exception e)
 {
 System.out.println(e);
 return -1;
 }
 }

 private Vector grabDataHosts()
 {
 try
 {
 int numReq = command.getNum();
 int numGotten = 0;
 int offset = 0;
 Vector datahosts = new Vector();
 Vector temp = new Vector();

 while(numGotten < numReq)
 {
 int numIndex = numReq - numGotten;

 temp = list.getDH(numIndex, offset);

 for(int i = 0; i<numIndex; i++)
 {
 DataHostData dhd = (DataHostData) temp.get(i);
 Commands c = new Commands(SVID, SVKEY,
3, command.getLong());
 CommandSender cs = new
CommandSender(dhd.getAddress(), DHPORT, c);
 if(cs.sendCommand())
 {
 datahosts.add(dhd);
 numGotten ++;
 }
 }
 offset += numReq;
 if(offset > (numReq * 10))
 return new Vector();
 }

 return datahosts;
 }

 catch(Exception e)
 {
 return new Vector();
 }
 }

 //Actions for DataHost--
 private int dhConnect()
 {
 try
 {
 DataHostData dhd = (DataHostData)
command.getObject();
 command.clearObject();

 //routine update of information on Manager
 dhd.setAddress("" + incoming.getInetAddress());

 list.addDataHost(dhd);
 return 1;
 }
 catch(Exception e)
 {
 System.out.println(e);
 return -1;
 }
 }
}

